These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8390356)
41. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jul; 1459(1):202-17. PubMed ID: 10924912 [TBL] [Abstract][Full Text] [Related]
42. Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis. Hammes GG Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6881-4. PubMed ID: 6129623 [TBL] [Abstract][Full Text] [Related]
43. Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. Groth G; Junge W Biochemistry; 1993 Aug; 32(32):8103-11. PubMed ID: 8394125 [TBL] [Abstract][Full Text] [Related]
44. Uni-site catalysis in thylakoids. The influence of membrane energization on ATP hydrolysis and ATP-Pi exchange. Fromme P; Gräber P FEBS Lett; 1990 Aug; 269(1):247-51. PubMed ID: 2143736 [TBL] [Abstract][Full Text] [Related]
45. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase. Deléage G; Penin F; Godinot C; Gautheron DC Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086 [TBL] [Abstract][Full Text] [Related]
46. Energizing effects of illumination on the reactivities of lysine residues of the gamma subunit of chloroplast ATP synthase. Komatsu-Takaki M Eur J Biochem; 1996 Mar; 236(2):470-5. PubMed ID: 8612618 [TBL] [Abstract][Full Text] [Related]
47. A critical appraisal of evidence for localized energy coupling. Kinetic studies on liposomes containing bacteriorhodopsin and ATP synthase. Van der Bend RL; Petersen J; Berden JA; Van Dam K; Westerhoff HV Biochem J; 1985 Sep; 230(2):543-9. PubMed ID: 2996506 [TBL] [Abstract][Full Text] [Related]
48. Molecular devices of chloroplast F(1)-ATP synthase for the regulation. Hisabori T; Konno H; Ichimura H; Strotmann H; Bald D Biochim Biophys Acta; 2002 Sep; 1555(1-3):140-6. PubMed ID: 12206906 [TBL] [Abstract][Full Text] [Related]
49. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Zhou JM; Xue ZX; Du ZY; Melese T; Boyer PD Biochemistry; 1988 Jul; 27(14):5129-35. PubMed ID: 2901855 [TBL] [Abstract][Full Text] [Related]
50. Covalent modification of the non-catalytic sites of the H(+)-ATPase from chloroplasts with 2-azido-[alpha-(32)P]ATP and its effect on ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2001 Feb; 1510(1-2):378-400. PubMed ID: 11342174 [TBL] [Abstract][Full Text] [Related]
51. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P D'Alessandro M; Turina P; Melandri BA; Dunn SD Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906 [TBL] [Abstract][Full Text] [Related]
52. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Walker JE; Saraste M; Runswick MJ; Gay NJ EMBO J; 1982; 1(8):945-51. PubMed ID: 6329717 [TBL] [Abstract][Full Text] [Related]
53. A portrait of the adenosine triphosphate synthetase-hydrolase. Wainio WW Physiol Chem Phys Med NMR; 1986; 18(4):215-32. PubMed ID: 3039548 [TBL] [Abstract][Full Text] [Related]
54. Subunit specific antisera to the Escherichia coli ATP synthase: effects on ATPase activity, energy transduction, and enzyme assembly. Smith JB; Sternweis PC Arch Biochem Biophys; 1982 Aug; 217(1):376-87. PubMed ID: 6181743 [No Abstract] [Full Text] [Related]
55. The ATP synthase gamma subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant. Krenn BE; Strotmann H; Van Walraven HS; Scholts MJ; Kraayenhof R Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):841-5. PubMed ID: 9169620 [TBL] [Abstract][Full Text] [Related]
56. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site. Murataliev MB; Boyer PD Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675 [TBL] [Abstract][Full Text] [Related]
57. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297 [TBL] [Abstract][Full Text] [Related]
58. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli. D'Alessandro M; Turina P; Melandri BA Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570 [TBL] [Abstract][Full Text] [Related]
59. Energy-dependent exchange of adenine nucleotides on chloroplast coupling factor (CF1). Strotmann H; Bickel-Sandkötter S Biochim Biophys Acta; 1977 Apr; 460(1):126-35. PubMed ID: 856262 [TBL] [Abstract][Full Text] [Related]
60. The carboxyl terminus of the epsilon subunit of the chloroplast ATP synthase is exposed during illumination. Johnson EA; McCarty RE Biochemistry; 2002 Feb; 41(7):2446-51. PubMed ID: 11841239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]