These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8390373)
21. The copper site in nitrous oxide reductase. Kroneck PM; Riester J; Zumft WG; Antholine WE Biol Met; 1990; 3(2):103-9. PubMed ID: 1965779 [TBL] [Abstract][Full Text] [Related]
22. Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase. Blackburn NJ; Barr ME; Woodruff WH; van der Oost J; de Vries S Biochemistry; 1994 Aug; 33(34):10401-7. PubMed ID: 8068678 [TBL] [Abstract][Full Text] [Related]
23. Structure of the binuclear heme iron-copper site in the quinol-oxidizing cytochrome aa3 from Bacillus subtilis. Powers L; Lauraeus M; Reddy KS; Chance B; Wikström M Biochim Biophys Acta; 1994 Jan; 1183(3):504-12. PubMed ID: 8286399 [TBL] [Abstract][Full Text] [Related]
24. The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. Kroneck PM; Antholine WA; Riester J; Zumft WG FEBS Lett; 1989 May; 248(1-2):212-3. PubMed ID: 2542087 [No Abstract] [Full Text] [Related]
25. ENDOR and ESEEM studies of cytochrome c oxidase: evidence for exchangeable protons at the CuA site. Hansen AP; Britt RD; Klein MP; Bender CJ; Babcock GT Biochemistry; 1993 Dec; 32(49):13718-24. PubMed ID: 8257706 [TBL] [Abstract][Full Text] [Related]
26. Mono-nuclear copper complexes mimicking the intermediates for the binuclear copper center of the subunit II of cytochrome oxidase: a peptide based approach. Dutta Gupta D; Usharani D; Mazumdar S Dalton Trans; 2016 Nov; 45(44):17624-17632. PubMed ID: 27747364 [TBL] [Abstract][Full Text] [Related]
27. The CuA center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of CuA domains. Larsson S; Källebring B; Wittung P; Malmström BG Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7167-71. PubMed ID: 7638162 [TBL] [Abstract][Full Text] [Related]
28. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. Farrar JA; Thomson AJ; Cheesman MR; Dooley DM; Zumft WG FEBS Lett; 1991 Dec; 294(1-2):11-5. PubMed ID: 1660405 [TBL] [Abstract][Full Text] [Related]
29. A comparison of three preparations of cytochrome c oxidase. Optical absorbance spectra, EPR spectra and reaction towards ligands. Lodder AL; van Gelder BF Biochim Biophys Acta; 1994 Jun; 1186(1-2):67-74. PubMed ID: 8011669 [TBL] [Abstract][Full Text] [Related]
30. Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. Kelly M; Lappalainen P; Talbo G; Haltia T; van der Oost J; Saraste M J Biol Chem; 1993 Aug; 268(22):16781-7. PubMed ID: 8393874 [TBL] [Abstract][Full Text] [Related]
31. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase. Chacón KN; Blackburn NJ J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616 [TBL] [Abstract][Full Text] [Related]
32. Q-band electron nuclear double resonance (ENDOR) and X-band EPR of the sulfobetaine 12 heat-treated cytochrome c oxidase complex. Musser SM; Fann YC; Gurbiel RJ; Hoffman BM; Chan SI J Biol Chem; 1997 Jan; 272(1):203-9. PubMed ID: 8995248 [TBL] [Abstract][Full Text] [Related]
33. A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. Antholine WE; Kastrau DH; Steffens GC; Buse G; Zumft WG; Kroneck PM Eur J Biochem; 1992 Nov; 209(3):875-81. PubMed ID: 1330560 [TBL] [Abstract][Full Text] [Related]
34. Heat treatment of cytochrome c oxidase perturbs the CuA site and affects proton pumping behavior. Li PM; Morgan JE; Nilsson T; Ma M; Chan SI Biochemistry; 1988 Sep; 27(19):7538-46. PubMed ID: 2462905 [TBL] [Abstract][Full Text] [Related]
35. Electron transfer between cytochrome c and the isolated CuA domain: identification of substrate-binding residues in cytochrome c oxidase. Lappalainen P; Watmough NJ; Greenwood C; Saraste M Biochemistry; 1995 May; 34(17):5824-30. PubMed ID: 7727443 [TBL] [Abstract][Full Text] [Related]
36. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Steffens GC; Soulimane T; Wolff G; Buse G Eur J Biochem; 1993 May; 213(3):1149-57. PubMed ID: 8389295 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutagenesis of highly conserved residues in helix VIII of subunit I of the cytochrome bo ubiquinol oxidase from Escherichia coli: an amphipathic transmembrane helix that may be important in conveying protons to the binuclear center. Thomas JW; Lemieux LJ; Alben JO; Gennis RB Biochemistry; 1993 Oct; 32(41):11173-80. PubMed ID: 8218180 [TBL] [Abstract][Full Text] [Related]
38. Modified, large-scale purification of the cytochrome o complex (bo-type oxidase) of Escherichia coli yields a two heme/one copper terminal oxidase with high specific activity. Minghetti KC; Goswitz VC; Gabriel NE; Hill JJ; Barassi CA; Georgiou CD; Chan SI; Gennis RB Biochemistry; 1992 Aug; 31(30):6917-24. PubMed ID: 1322173 [TBL] [Abstract][Full Text] [Related]
39. Purple Mixed-Valent Copper A. Morgada MN; Murgida DH; Vila AJ Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851825 [TBL] [Abstract][Full Text] [Related]
40. On the nature of cysteine coordination to CuA in cytochrome c oxidase. Martin CT; Scholes CP; Chan SI J Biol Chem; 1988 Jun; 263(17):8420-9. PubMed ID: 2836423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]