These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8390460)

  • 21. The regulatory region of calcium/calmodulin-dependent protein kinase I contains closely associated autoinhibitory and calmodulin-binding domains.
    Yokokura H; Picciotto MR; Nairn AC; Hidaka H
    J Biol Chem; 1995 Oct; 270(40):23851-9. PubMed ID: 7559563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin.
    Meyer DF; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 May; 271(19):11284-90. PubMed ID: 8626680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methionine to glutamine substitutions in the C-terminal domain of calmodulin impair the activation of three protein kinases.
    Chin D; Means AR
    J Biol Chem; 1996 Nov; 271(48):30465-71. PubMed ID: 8940012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain.
    Wu Z; Wong ST; Storms DR
    J Biol Chem; 1993 Nov; 268(32):23766-8. PubMed ID: 8226907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrasteric regulation of myosin light chain kinase: the pseudosubstrate prototope binds to the active site.
    Bagchi IC; Kemp BE; Means AR
    Mol Endocrinol; 1992 Apr; 6(4):621-6. PubMed ID: 1584224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A strange calmodulin of yeast.
    Yazawa M; Nakashima K; Yagi K
    Mol Cell Biochem; 1999 Jan; 190(1-2):47-54. PubMed ID: 10098968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of amino acids essential for calmodulin binding and activation of smooth muscle myosin light chain kinase.
    Bagchi IC; Huang QH; Means AR
    J Biol Chem; 1992 Feb; 267(5):3024-9. PubMed ID: 1737757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional significance of the central helix in calmodulin.
    Putkey JA; Ono T; VanBerkum MF; Means AR
    J Biol Chem; 1988 Aug; 263(23):11242-9. PubMed ID: 2841323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of calmodulin-dependent protein kinase IV by autophosphorylation of serine 332 within the putative calmodulin-binding domain.
    Watanabe S; Okuno S; Kitani T; Fujisawa H
    J Biol Chem; 1996 Mar; 271(12):6903-10. PubMed ID: 8636117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p.
    Geier BM; Wiech H; Schiebel E
    J Biol Chem; 1996 Nov; 271(45):28366-74. PubMed ID: 8910460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution.
    Han CH; Roberts DM
    Eur J Biochem; 1997 Mar; 244(3):904-12. PubMed ID: 9108264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
    Fefeu S; Biekofsky RR; McCormick JE; Martin SR; Bayley PM; Feeney J
    Biochemistry; 2000 Dec; 39(51):15920-31. PubMed ID: 11123919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fourth EF-hand of calmodulin and its helix-loop-helix components: impact on calcium binding and enzyme activation.
    George SE; Su Z; Fan D; Wang S; Johnson JD
    Biochemistry; 1996 Jun; 35(25):8307-13. PubMed ID: 8679587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution X-ray scattering data show structural differences among chimeras of yeast and chicken calmodulin: implications for structure and function.
    Yokouchi T; Nogami H; Izumi Y; Yoshino H; Nakashima K; Yazawa M
    Biochemistry; 2003 Feb; 42(7):2195-201. PubMed ID: 12590609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
    Ishida H; Takahashi K; Nakashima K; Kumaki Y; Nakata M; Hikichi K; Yazawa M
    Biochemistry; 2000 Nov; 39(45):13660-8. PubMed ID: 11076504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of basic residues involved in activation and calmodulin binding of rabbit smooth muscle myosin light chain kinase.
    Fitzsimons DP; Herring BP; Stull JT; Gallagher PJ
    J Biol Chem; 1992 Nov; 267(33):23903-9. PubMed ID: 1429728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
    Ohki S; Ikura M; Zhang M
    Biochemistry; 1997 Apr; 36(14):4309-16. PubMed ID: 9100027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin.
    Mukherjea P; Maune JF; Beckingham K
    Protein Sci; 1996 Mar; 5(3):468-77. PubMed ID: 8868483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds.
    Tan RY; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 Mar; 271(13):7479-83. PubMed ID: 8631777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin.
    Maune JF; Klee CB; Beckingham K
    J Biol Chem; 1992 Mar; 267(8):5286-95. PubMed ID: 1544911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.