These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 8390764)
1. HSV-1 activation of HIV-1 transcription is augmented by a cellular protein that binds near the initiator element. Margolis DM; Ostrove JM; Straus SE Virology; 1993 Jan; 192(1):370-4. PubMed ID: 8390764 [TBL] [Abstract][Full Text] [Related]
2. Repression of the human immunodeficiency virus type-1 long terminal repeat by the c-Myc oncoprotein. Stojanova A; Caro C; Jarjour RJ; Oster SK; Penn LZ; Germinario RJ J Cell Biochem; 2004 May; 92(2):400-13. PubMed ID: 15108364 [TBL] [Abstract][Full Text] [Related]
3. Identification of human cytomegalovirus target sequences in the human immunodeficiency virus long terminal repeat. Potential role of IE2-86 binding to sequences between -120 and -20 in promoter transactivation. Yurochko AD; Huong SM; Huang ES J Hum Virol; 1999; 2(2):81-90. PubMed ID: 10225210 [TBL] [Abstract][Full Text] [Related]
4. Role of glucocorticoid receptor binding sites in the human immunodeficiency virus type 1 long terminal repeat in steroid-mediated suppression of HIV gene expression. Mitra D; Sikder SK; Laurence J Virology; 1995 Dec; 214(2):512-21. PubMed ID: 8553553 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein. Zhang JL; Sharma PL; Crumpacker CS Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334 [TBL] [Abstract][Full Text] [Related]
7. The GGTCA palindrome and cognate cellular factors in trans-regulation of human immunodeficiency virus long terminal repeat by herpes simplex virus. Feng CP; Kulka M; Aurelian L J Gen Virol; 1993 Apr; 74 ( Pt 4)():715-23. PubMed ID: 8385697 [TBL] [Abstract][Full Text] [Related]
8. NF-kappa B-binding proteins induced by HSV-1 infection of U937 cells are not involved in activation of human immunodeficiency virus. Feng CP; Kulka M; Aurelian L Virology; 1993 Feb; 192(2):491-500. PubMed ID: 8380662 [TBL] [Abstract][Full Text] [Related]
9. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors. Zhao C; Chen Y; Park J; Kim JB; Tang H Biochem Biophys Res Commun; 2004 Sep; 322(2):614-22. PubMed ID: 15325274 [TBL] [Abstract][Full Text] [Related]
10. The X protein of HBV induces HIV-1 long terminal repeat transcription by enhancing the binding of C/EBPβ and CREB1/2 regulatory proteins to the long terminal repeat of HIV-1. Mu Y; Yu Y; Yue X; Musarat I; Gong R; Zhu C; Liu Y; Liu F; Zhu Y; Wu J Virus Res; 2011 Mar; 156(1-2):81-90. PubMed ID: 21237225 [TBL] [Abstract][Full Text] [Related]
11. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3. Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related]
13. BCL6 can repress transcription from the human immunodeficiency virus type I promoter/enhancer region. Baron BW; Desai M; Baber LJ; Paras L; Zhang Q; Sadhu A; Duguay S; Nucifora G; McKeithan TW; Zeleznik-Le N Genes Chromosomes Cancer; 1997 May; 19(1):14-21. PubMed ID: 9135990 [TBL] [Abstract][Full Text] [Related]
14. Sequence elements downstream of the human immunodeficiency virus type 1 long terminal repeat are required for efficient viral gene transcription. Liang C; Li X; Quan Y; Laughrea M; Kleiman L; Hiscott J; Wainberg MA J Mol Biol; 1997 Sep; 272(2):167-77. PubMed ID: 9299345 [TBL] [Abstract][Full Text] [Related]
15. U5 region of the human immunodeficiency virus type 1 long terminal repeat contains TRE-like cAMP-responsive elements that bind both AP-1 and CREB/ATF proteins. Rabbi MF; Saifuddin M; Gu DS; Kagnoff MF; Roebuck KA Virology; 1997 Jun; 233(1):235-45. PubMed ID: 9201233 [TBL] [Abstract][Full Text] [Related]
16. NF-kappaB-repressing factor inhibits elongation of human immunodeficiency virus type 1 transcription by DRB sensitivity-inducing factor. Dreikhausen U; Hiebenthal-Millow K; Bartels M; Resch K; Nourbakhsh M Mol Cell Biol; 2005 Sep; 25(17):7473-83. PubMed ID: 16107696 [TBL] [Abstract][Full Text] [Related]
17. Regulation of HIV-1 gene expression by NF-IL6. Tesmer VM; Bina M J Mol Biol; 1996 Sep; 262(3):327-35. PubMed ID: 8844998 [TBL] [Abstract][Full Text] [Related]
18. Differential contribution of herpes simplex virus type 1 gene products and cellular factors to the activation of human immunodeficiency virus type 1 provirus. Vlach J; Pitha PM J Virol; 1993 Jul; 67(7):4427-31. PubMed ID: 8389940 [TBL] [Abstract][Full Text] [Related]
19. ETS family proteins activate transcription from HIV-1 long terminal repeat. Seth A; Hodge DR; Thompson DM; Robinson L; Panayiotakis A; Watson DK; Papas TS AIDS Res Hum Retroviruses; 1993 Oct; 9(10):1017-23. PubMed ID: 8280476 [TBL] [Abstract][Full Text] [Related]
20. Herpes simplex virus type 1-mediated induction of human immunodeficiency virus type 1 provirus correlates with binding of nuclear proteins to the NF-kappa B enhancer and leader sequence. Vlach J; Pitha PM J Virol; 1992 Jun; 66(6):3616-23. PubMed ID: 1316471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]