These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8391019)
1. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases. Goldblum A; Rayan A; Fliess A; Glick M J Chem Inf Comput Sci; 1993; 33(2):270-4. PubMed ID: 8391019 [TBL] [Abstract][Full Text] [Related]
2. Modulation of the affinity of aspartic proteases by the mutated residues in active site models. Goldblum A FEBS Lett; 1990 Feb; 261(2):241-4. PubMed ID: 2107098 [TBL] [Abstract][Full Text] [Related]
3. A quantum mechanical study of the active site of aspartic proteinases. Beveridge AJ; Heywood GC Biochemistry; 1993 Apr; 32(13):3325-33. PubMed ID: 8461297 [TBL] [Abstract][Full Text] [Related]
4. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. Andreeva NS; Bochkarev A; Pechik I Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318 [No Abstract] [Full Text] [Related]
5. A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism. Coates L; Erskine PT; Wood SP; Myles DA; Cooper JB Biochemistry; 2001 Nov; 40(44):13149-57. PubMed ID: 11683623 [TBL] [Abstract][Full Text] [Related]
6. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency. Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349 [No Abstract] [Full Text] [Related]
7. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex. Rungrotmongkol T; Mulholland AJ; Hannongbua S J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299 [TBL] [Abstract][Full Text] [Related]
8. Quantum mechanical modeling of aspartic proteinase interactions: difference in binding of diastereomeric statine models. Goldblum A Biochem Biophys Res Commun; 1988 Dec; 157(2):450-6. PubMed ID: 3060116 [TBL] [Abstract][Full Text] [Related]
9. X-ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases. Coates L; Erskine PT; Mall S; Gill R; Wood SP; Myles DA; Cooper JB Eur Biophys J; 2006 Sep; 35(7):559-66. PubMed ID: 16673078 [TBL] [Abstract][Full Text] [Related]
10. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution. Veerapandian B; Cooper JB; Sali A; Blundell TL J Mol Biol; 1990 Dec; 216(4):1017-29. PubMed ID: 2266553 [TBL] [Abstract][Full Text] [Related]
11. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. Blundell TL; Jenkins JA; Sewell BT; Pearl LH; Cooper JB; Tickle IJ; Veerapandian B; Wood SP J Mol Biol; 1990 Feb; 211(4):919-41. PubMed ID: 2179568 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor. Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of HIV-1 protease with peptide substrate. Harrison RW; Weber IT Protein Eng; 1994 Nov; 7(11):1353-63. PubMed ID: 7700867 [TBL] [Abstract][Full Text] [Related]
14. The active site of aspartic proteinases. Pearl L; Blundell T FEBS Lett; 1984 Aug; 174(1):96-101. PubMed ID: 6381096 [TBL] [Abstract][Full Text] [Related]
15. Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases. Veerapandian B; Cooper JB; Sali A; Blundell TL; Rosati RL; Dominy BW; Damon DB; Hoover DJ Protein Sci; 1992 Mar; 1(3):322-8. PubMed ID: 1304340 [TBL] [Abstract][Full Text] [Related]
16. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin. Bailey D; Cooper JB; Veerapandian B; Blundell TL; Atrash B; Jones DM; Szelke M Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):363-71. PubMed ID: 8424781 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311 [TBL] [Abstract][Full Text] [Related]
18. In vitro inhibition of HIV-1 proteinase by cerulenin. Moelling K; Schulze T; Knoop MT; Kay J; Jupp R; Nicolaou G; Pearl LH FEBS Lett; 1990 Feb; 261(2):373-7. PubMed ID: 1690152 [TBL] [Abstract][Full Text] [Related]
19. A preliminary neutron Laue diffraction study of the aspartic proteinase endothiapepsin. Cooper JB; Myles DA Acta Crystallogr D Biol Crystallogr; 2000 Feb; 56(Pt 2):246-8. PubMed ID: 10666618 [TBL] [Abstract][Full Text] [Related]
20. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis. Beveridge A Proteins; 1996 Mar; 24(3):322-34. PubMed ID: 8778779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]