BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8391019)

  • 1. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases.
    Goldblum A; Rayan A; Fliess A; Glick M
    J Chem Inf Comput Sci; 1993; 33(2):270-4. PubMed ID: 8391019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the affinity of aspartic proteases by the mutated residues in active site models.
    Goldblum A
    FEBS Lett; 1990 Feb; 261(2):241-4. PubMed ID: 2107098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum mechanical study of the active site of aspartic proteinases.
    Beveridge AJ; Heywood GC
    Biochemistry; 1993 Apr; 32(13):3325-33. PubMed ID: 8461297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region.
    Andreeva NS; Bochkarev A; Pechik I
    Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318
    [No Abstract]   [Full Text] [Related]  

  • 5. A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism.
    Coates L; Erskine PT; Wood SP; Myles DA; Cooper JB
    Biochemistry; 2001 Nov; 40(44):13149-57. PubMed ID: 11683623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency.
    Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J
    Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349
    [No Abstract]   [Full Text] [Related]  

  • 7. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanical modeling of aspartic proteinase interactions: difference in binding of diastereomeric statine models.
    Goldblum A
    Biochem Biophys Res Commun; 1988 Dec; 157(2):450-6. PubMed ID: 3060116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases.
    Coates L; Erskine PT; Mall S; Gill R; Wood SP; Myles DA; Cooper JB
    Eur Biophys J; 2006 Sep; 35(7):559-66. PubMed ID: 16673078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution.
    Veerapandian B; Cooper JB; Sali A; Blundell TL
    J Mol Biol; 1990 Dec; 216(4):1017-29. PubMed ID: 2266553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin.
    Blundell TL; Jenkins JA; Sewell BT; Pearl LH; Cooper JB; Tickle IJ; Veerapandian B; Wood SP
    J Mol Biol; 1990 Feb; 211(4):919-41. PubMed ID: 2179568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor.
    Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW
    Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of HIV-1 protease with peptide substrate.
    Harrison RW; Weber IT
    Protein Eng; 1994 Nov; 7(11):1353-63. PubMed ID: 7700867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active site of aspartic proteinases.
    Pearl L; Blundell T
    FEBS Lett; 1984 Aug; 174(1):96-101. PubMed ID: 6381096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases.
    Veerapandian B; Cooper JB; Sali A; Blundell TL; Rosati RL; Dominy BW; Damon DB; Hoover DJ
    Protein Sci; 1992 Mar; 1(3):322-8. PubMed ID: 1304340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin.
    Bailey D; Cooper JB; Veerapandian B; Blundell TL; Atrash B; Jones DM; Szelke M
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):363-71. PubMed ID: 8424781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro inhibition of HIV-1 proteinase by cerulenin.
    Moelling K; Schulze T; Knoop MT; Kay J; Jupp R; Nicolaou G; Pearl LH
    FEBS Lett; 1990 Feb; 261(2):373-7. PubMed ID: 1690152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary neutron Laue diffraction study of the aspartic proteinase endothiapepsin.
    Cooper JB; Myles DA
    Acta Crystallogr D Biol Crystallogr; 2000 Feb; 56(Pt 2):246-8. PubMed ID: 10666618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis.
    Beveridge A
    Proteins; 1996 Mar; 24(3):322-34. PubMed ID: 8778779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.