These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8391414)

  • 1. Positive end-expiratory pressure-induced, calcium-channel-mediated increases in pulmonary vascular resistance in neonatal lambs.
    Venkataraman ST; Fuhrman BP; Howland DF; DeFrancisis M
    Crit Care Med; 1993 Jul; 21(7):1066-76. PubMed ID: 8391414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air trapping causes a Ca2(+)-channel-mediated increase in pulmonary vascular resistance in neonatal lambs.
    Venkataraman ST; Fuhrman BP; Howland DF
    Pediatr Res; 1991 Jan; 29(1):89-92. PubMed ID: 1848002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary vascular resistance after cessation of positive end-expiratory pressure.
    Fuhrman BP; Smith-Wright DL; Venkataraman S; Howland DF
    J Appl Physiol (1985); 1989 Feb; 66(2):660-8. PubMed ID: 2651384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of verapamil on pulmonary and eicosanoid responses to endotoxin in awake sheep.
    Ahmed T; D'Brot J; Wasserman M; Muccitelli R; Robinson M; Tucker S; Marchette B
    J Appl Physiol (1985); 1988 Apr; 64(4):1700-8. PubMed ID: 3163996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary vascular distensibility of arterial, middle, and venous regions in newborn lambs.
    Tod ML; Yoshimura K; Rubin LJ
    J Appl Physiol (1985); 1991 Mar; 70(3):1315-22. PubMed ID: 2032998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs.
    Polglase GR; Morley CJ; Crossley KJ; Dargaville P; Harding R; Morgan DL; Hooper SB
    J Appl Physiol (1985); 2005 Oct; 99(4):1453-61. PubMed ID: 15890759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nitric oxide on hyperinflation-induced pulmonary hypertension in the isolated-perfused lung.
    Ibla JC; Arnold JH; Thompson JE; Breuer CK; Benjamin PK; Lillehei CW
    Crit Care Med; 1996 Aug; 24(8):1388-95. PubMed ID: 8706496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny of neonatal pulmonary vascular pressure-flow relationships.
    Tod ML; Yoshimura K; Rubin LJ
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H684-90. PubMed ID: 1558176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of nitric oxide synthase modulation on porcine systemic and pulmonary circulation in vivo.
    Dahm P; Thörne J; Zoucas E; Mårtensson L; Myhre E; Blomquist S
    Crit Care Med; 1997 Feb; 25(2):280-5. PubMed ID: 9034265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discordant effects of alkalosis on elevated pulmonary vascular resistance and vascular reactivity in lamb lungs.
    Moreira GA; O'Donnell DC; Tod ML; Madden JA; Gordon JB
    Crit Care Med; 1999 Sep; 27(9):1838-42. PubMed ID: 10507607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intratracheal pulmonary ventilation in a rabbit lung injury model: continuous airway pressure monitoring and gas exchange efficacy.
    Hon EK; Hultquist KA; Loescher T; Raszynski A; Torbati D; Tabares C; Wolfsdorf J
    Crit Care Med; 2000 Jul; 28(7):2480-5. PubMed ID: 10921582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of acetylcholine and endothelin-1 in the modulation of pulmonary arterial pressure.
    Schmeck J; Konrad C; Schöffel S; Wendel-Wellner M; Gluth H; Koch T; Krafft P
    Crit Care Med; 2000 Dec; 28(12):3869-75. PubMed ID: 11153628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning pulmonary vascular resistance using the reservoir-wave model.
    Bouwmeester JC; Belenkie I; Shrive NG; Tyberg JV
    J Appl Physiol (1985); 2013 Dec; 115(12):1838-45. PubMed ID: 24177689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary vascular response to digoxin in newborn lambs.
    Milstein JM; Goetzman BW
    Pediatr Pharmacol (New York); 1984; 4(4):223-9. PubMed ID: 6522130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ventilation strategies on survival in severe controlled hemorrhagic shock.
    Herff H; Paal P; von Goedecke A; Lindner KH; Severing AC; Wenzel V
    Crit Care Med; 2008 Sep; 36(9):2613-20. PubMed ID: 18679111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of adrenomedullin-induced increase of pulmonary blood flow in fetal sheep.
    Takahashi Y; de Vroomen M; Gournay V; Roman C; Rudolph AM; Heymann MA
    Pediatr Res; 1999 Feb; 45(2):276-81. PubMed ID: 10022602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model.
    Cheifetz IM; Craig DM; Quick G; McGovern JJ; Cannon ML; Ungerleider RM; Smith PK; Meliones JN
    Crit Care Med; 1998 Apr; 26(4):710-6. PubMed ID: 9559609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent effects of indomethacin on hypoxic vasoconstriction in neonatal lamb lungs.
    Gordon JB; Tod ML; Wetzel RC; McGeady ML; Adkinson NF; Sylvester JT
    Pediatr Res; 1988 Jun; 23(6):580-4. PubMed ID: 3393389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of nitric oxide synthesis results in a selective increase in arterial resistance in rabbit lungs.
    Sprague RS; Stephenson AH; Dimmitt RA; Weintraub NL; Branch CA; McMurdo L; Lonigro AJ
    Pol J Pharmacol; 1994; 46(6):579-85. PubMed ID: 7620518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiopulmonary effects of unilateral airway pressure changes in intact infant lambs.
    Fuhrman BP; Everitt J; Lock JE
    J Appl Physiol Respir Environ Exerc Physiol; 1984 May; 56(5):1439-48. PubMed ID: 6373696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.