These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8391482)

  • 1. Intracellular protons control the affinity of skeletal muscle ATP-sensitive K+ channels for potassium-channel-openers.
    Forestier C; Depresle Y; Vivaudou M
    FEBS Lett; 1993 Jul; 325(3):276-80. PubMed ID: 8391482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.
    Vivaudou M; Forestier C
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):629-45. PubMed ID: 7473225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of K channel openers on skeletal muscle KATP channels. Interactions with nucleotides and protons.
    Forestier C; Pierrard J; Vivaudou M
    J Gen Physiol; 1996 Apr; 107(4):489-502. PubMed ID: 8722562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle.
    Davies NW; Standen NB; Stanfield PR
    J Physiol; 1992 Jan; 445():549-68. PubMed ID: 1501145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of ATP-dependent K+ currents in intact skeletal muscle fibres by reduced intracellular pH.
    Standen NB; Pettit AI; Davies NW; Stanfield PR
    Proc Biol Sci; 1992 Mar; 247(1320):195-8. PubMed ID: 1350098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle.
    Forestier C; Vivaudou M
    J Membr Biol; 1993 Feb; 132(1):87-94. PubMed ID: 8459449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH.
    Allard B; Lazdunski M; Rougier O
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual effects of calcium on ATP-sensitive potassium channels of frog skeletal muscle.
    Krippeit-Drews P; Lönnendonker U
    Biochim Biophys Acta; 1992 Jul; 1108(1):119-22. PubMed ID: 1643077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons.
    Davies NW
    Nature; 1990 Jan; 343(6256):375-7. PubMed ID: 2153936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent modulation of the cloned renal K+ channel, ROMK.
    McNicholas CM; MacGregor GG; Islas LD; Yang Y; Hebert SC; Giebisch G
    Am J Physiol; 1998 Dec; 275(6):F972-81. PubMed ID: 9843915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of vascular K(ATP) channels by U-37883A: a comparison with cardiac and skeletal muscle.
    Wellman GC; Barrett-Jolley R; Köppel H; Everitt D; Quayle JM
    Br J Pharmacol; 1999 Oct; 128(4):909-16. PubMed ID: 10556925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vanadate as an activator of ATP--sensitive potassium channels in mouse skeletal muscle.
    Neumcke B; Weik R
    Eur Biophys J; 1991; 19(3):119-23. PubMed ID: 2060492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes.
    Jahangir A; Terzic A; Kurachi Y
    Cardiovasc Res; 1994 Jun; 28(6):831-5. PubMed ID: 7923287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal Ca2+ ions inactivate and modify ATP-sensitive potassium channels in adult mouse skeletal muscle.
    Hehl S; Moser C; Weik R; Neumcke B
    Biochim Biophys Acta; 1994 Mar; 1190(2):257-63. PubMed ID: 8142424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N; McMurray G; Brading AF
    Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of flecainide on ATP-sensitive K(+) channels in pig urethral myocytes.
    Yunoki T; Teramoto N; Naito S; Ito Y
    Br J Pharmacol; 2001 Jul; 133(5):730-8. PubMed ID: 11429398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes.
    Clapp LH
    Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular H+ and Ca2+ modulation of trypsin-modified ATP-sensitive K+ channels in rabbit ventricular myocytes.
    Fan Z; Makielski JC
    Circ Res; 1993 Mar; 72(3):715-22. PubMed ID: 8381726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.