BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8391679)

  • 1. Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H(+)-sensitive microelectrode based on a PVC-gelled membrane.
    Voipio J; Kaila K
    Pflugers Arch; 1993 May; 423(3-4):193-201. PubMed ID: 8391679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of extracellular pH transients evoked by selective synaptic and exogenous activation of AMPA, NMDA, and GABAA receptors in the rat hippocampal slice.
    Voipio J; Paalasmaa P; Taira T; Kaila K
    J Neurophysiol; 1995 Aug; 74(2):633-42. PubMed ID: 7472370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice.
    Taira T; Paalasmaa P; Voipio J; Kaila K
    J Neurophysiol; 1995 Aug; 74(2):643-9. PubMed ID: 7472371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats.
    Voipio J; Ballanyi K
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):527-42. PubMed ID: 9080379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices.
    Chen JC; Chesler M
    J Neurophysiol; 1992 Jan; 67(1):29-36. PubMed ID: 1348085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectrode determination of pH and PCO2 in rat proximal tubule after benzolamide: evidence for hydrogen ion secretion.
    DuBose TD; Pucacco LR; Seldin DW; Carter NW; Kokko JP
    Kidney Int; 1979 Jun; 15(6):624-9. PubMed ID: 37362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice.
    Lee J; Taira T; Pihlaja P; Ransom BR; Kaila K
    Brain Res; 1996 Jan; 706(2):210-6. PubMed ID: 8822358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of spreading depression by changes in extracellular pH.
    Tong CK; Chesler M
    J Neurophysiol; 2000 Nov; 84(5):2449-57. PubMed ID: 11067987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO
    Rasmussen JK; Boedtkjer E
    J Cereb Blood Flow Metab; 2018 Mar; 38(3):492-505. PubMed ID: 28318362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine.
    Lamsa K; Kaila K
    J Neurophysiol; 1997 Nov; 78(5):2582-91. PubMed ID: 9356408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A change from HCO3(-)-CO2- to hepes-buffered medium modifies membrane properties of rat CA1 pyramidal neurones in vitro.
    Church J
    J Physiol; 1992 Sep; 455():51-71. PubMed ID: 1336555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat.
    Balestrino M; Somjen GG
    J Physiol; 1988 Feb; 396():247-66. PubMed ID: 2842490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of activity-evoked pH transients and extracellular pH buffering in rat hippocampal slices.
    Tong CK; Chen K; Chesler M
    J Neurophysiol; 2006 Jun; 95(6):3686-97. PubMed ID: 16611838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-evoked extracellular pH shifts in slices of rat dorsal lateral geniculate nucleus.
    Tong CK; Chesler M
    Brain Res; 1999 Jan; 815(2):373-81. PubMed ID: 9878835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes.
    Chesler M; Chen JC; Kraig RP
    J Neurosci Methods; 1994 Aug; 53(2):129-36. PubMed ID: 7823615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new design of double-barrelled microelectrodes for intracellular pH-measurement in vivo.
    Hagberg H; Larsson S; Haljamäe H
    Acta Physiol Scand; 1983 Jun; 118(2):149-53. PubMed ID: 6414249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous pH shifts facilitate spreading depression by effect on NMDA receptors.
    Tong CK; Chesler M
    J Neurophysiol; 1999 Apr; 81(4):1988-91. PubMed ID: 10200236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent pH shifts in hippocampal slices from normal and carbonic anhydrase II-deficient mice.
    Tong CK; Cammer W; Chesler M
    Glia; 2000 Aug; 31(2):125-30. PubMed ID: 10878599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.