These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8391695)

  • 1. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone).
    Oksanen CA; Zografi G
    Pharm Res; 1993 Jun; 10(6):791-9. PubMed ID: 8391695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of absorbed water on the properties of amorphous mixtures containing sucrose.
    Shamblin SL; Zografi G
    Pharm Res; 1999 Jul; 16(7):1119-24. PubMed ID: 10450941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of water on the molecular mobility of sucrose and poly(vinylpyrrolidone) in a colyophilized formulation as measured by (13)C-NMR relaxation time.
    Aso Y; Yoshioka S; Zhang J; Zografi G
    Chem Pharm Bull (Tokyo); 2002 Jun; 50(6):822-6. PubMed ID: 12045339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between water and poly(vinylpyrrolidone) containing polyethylene glycol.
    Hamaura T; Newton JM
    J Pharm Sci; 1999 Nov; 88(11):1228-33. PubMed ID: 10564074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule tracer diffusion dynamics.
    Bhattacharya S; Sharma DK; Saurabh S; De S; Sain A; Nandi A; Chowdhury A
    J Phys Chem B; 2013 Jun; 117(25):7771-82. PubMed ID: 23777572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water mobility in poly(ethylene glycol)-, poly(vinylpyrrolidone)-, and gelatin-water systems, as indicated by dielectric relaxation time, spin-lattice relaxation time, and water activity.
    Yoshioka S; Aso Y; Otsuka T; Kojima S
    J Pharm Sci; 1995 Sep; 84(9):1072-7. PubMed ID: 8537884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions.
    Crowley KJ; Zografi G
    J Pharm Sci; 2002 Oct; 91(10):2150-65. PubMed ID: 12226842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone).
    Oksanen CA; Zografi G
    Pharm Res; 1990 Jun; 7(6):654-7. PubMed ID: 2367334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions.
    Aso Y; Yoshioka S; Miyazaki T; Kawanishi T
    Chem Pharm Bull (Tokyo); 2009 Jan; 57(1):61-4. PubMed ID: 19122317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization.
    Matsumoto T; Zografi G
    Pharm Res; 1999 Nov; 16(11):1722-8. PubMed ID: 10571278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mobility of nifedipine-PVP and phenobarbital-PVP solid dispersions as measured by 13C-NMR spin-lattice relaxation time.
    Aso Y; Yoshioka S
    J Pharm Sci; 2006 Feb; 95(2):318-25. PubMed ID: 16372315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mobility of lyophilized poly(vinylpyrrolidone) and methylcellulose as determined by the laboratory and rotating frame spin-lattice relaxation times of 1H and 13C.
    Yoshioka S; Aso Y; Kojima S
    Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1289-92. PubMed ID: 14600374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics simulation of reactant mobility in an amorphous formulation of a peptide in poly(vinylpyrrolidone).
    Xiang TX; Anderson BD
    J Pharm Sci; 2004 Apr; 93(4):855-76. PubMed ID: 14999724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers.
    Taylor LS; Langkilde FW; Zografi G
    J Pharm Sci; 2001 Jul; 90(7):888-901. PubMed ID: 11458337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture.
    Konno H; Taylor LS
    Pharm Res; 2008 Apr; 25(4):969-78. PubMed ID: 17520180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water.
    Marsac PJ; Konno H; Rumondor AC; Taylor LS
    Pharm Res; 2008 Mar; 25(3):647-56. PubMed ID: 17846870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and effect of water content on molecular mobility in poly(vinylpyrrolidone) glasses: a molecular dynamics simulation.
    Xiang TX; Anderson BD
    Pharm Res; 2005 Aug; 22(8):1205-14. PubMed ID: 16078130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1999 Jan; 16(1):135-40. PubMed ID: 9950292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.