These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 8392330)
1. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Pau RN; Eldridge ME; Lowe DJ; Mitchenall LA; Eady RR Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):101-7. PubMed ID: 8392330 [TBL] [Abstract][Full Text] [Related]
2. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium. Pau RN; Mitchenall LA; Robson RL J Bacteriol; 1989 Jan; 171(1):124-9. PubMed ID: 2914845 [TBL] [Abstract][Full Text] [Related]
3. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Dilworth MJ; Eady RR; Eldridge ME Biochem J; 1988 Feb; 249(3):745-51. PubMed ID: 3162672 [TBL] [Abstract][Full Text] [Related]
4. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Dilworth MJ; Eldridge ME; Eady RR Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785 [TBL] [Abstract][Full Text] [Related]
5. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Schneider K; Gollan U; Dröttboom M; Selsemeier-Voigt S; Müller A Eur J Biochem; 1997 Mar; 244(3):789-800. PubMed ID: 9108249 [TBL] [Abstract][Full Text] [Related]
6. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of N Harris DF; Lukoyanov DA; Shaw S; Compton P; Tokmina-Lukaszewska M; Bothner B; Kelleher N; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2018 Feb; 57(5):701-710. PubMed ID: 29283553 [TBL] [Abstract][Full Text] [Related]
8. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the Fe protein. Eady RR; Richardson TH; Miller RW; Hawkins M; Lowe DJ Biochem J; 1988 Nov; 256(1):189-96. PubMed ID: 2851977 [TBL] [Abstract][Full Text] [Related]
9. Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure. Natzke J; Noar J; Bruno-Bárcena JM Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915110 [No Abstract] [Full Text] [Related]
10. The vanadium-containing nitrogenase of Azotobacter. Eady RR Biofactors; 1988 Jul; 1(2):111-6. PubMed ID: 3076437 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of the Metalloclusters of Nitrogenases. Hu Y; Ribbe MW Annu Rev Biochem; 2016 Jun; 85():455-83. PubMed ID: 26844394 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of nitrogenase from a delta nifW strain of Azotobacter vinelandii. Kim S; Burgess BK J Biol Chem; 1994 Feb; 269(6):4215-20. PubMed ID: 8307984 [TBL] [Abstract][Full Text] [Related]
13. Isolation of an iron-molybdenum cofactor from nitrogenase. Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3249-53. PubMed ID: 410019 [TBL] [Abstract][Full Text] [Related]
14. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Eady RR; Robson RL; Richardson TH; Miller RW; Hawkins M Biochem J; 1987 May; 244(1):197-207. PubMed ID: 2821997 [TBL] [Abstract][Full Text] [Related]
15. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. Scott DJ; Dean DR; Newton WE J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190 [TBL] [Abstract][Full Text] [Related]
16. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Miller RW; Eady RR Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922 [TBL] [Abstract][Full Text] [Related]
17. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N Harris DF; Lukoyanov DA; Kallas H; Trncik C; Yang ZY; Compton P; Kelleher N; Einsle O; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2019 Jul; 58(30):3293-3301. PubMed ID: 31283201 [TBL] [Abstract][Full Text] [Related]
18. The genes encoding the delta subunits of dinitrogenases 2 and 3 are required for mo-independent diazotrophic growth by Azotobacter vinelandii. Waugh SI; Paulsen DM; Mylona PV; Maynard RH; Premakumar R; Bishop PE J Bacteriol; 1995 Mar; 177(6):1505-10. PubMed ID: 7883707 [TBL] [Abstract][Full Text] [Related]
19. A vanadium and iron cluster accumulates on VnfX during iron-vanadium-cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. Rüttimann-Johnson C; Staples CR; Rangaraj P; Shah VK; Ludden PW J Biol Chem; 1999 Jun; 274(25):18087-92. PubMed ID: 10364262 [TBL] [Abstract][Full Text] [Related]
20. Metal substitution in the active site of nitrogenase MFe(7)S(9) (M = Mo(4+), V(3+), Fe(3+)). Lovell T; Torres RA; Han WG; Liu T; Case DA; Noodleman L Inorg Chem; 2002 Nov; 41(22):5744-53. PubMed ID: 12401079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]