These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 8392379)
21. Identification of the NADPH-binding protein of the neutrophil superoxide-generating oxidase of guinea pigs. Ge F; Guillory RJ Biotechnol Appl Biochem; 1994 Feb; 19(1):111-28. PubMed ID: 8136076 [TBL] [Abstract][Full Text] [Related]
22. The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues. Tisch D; Sharoni Y; Danilenko M; Aviram I Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):715-9. PubMed ID: 7654216 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the NADPH-dependent superoxide production activated by sodium dodecyl sulfate in a cell-free system of pig neutrophils. Fujita I; Takeshige K; Minakami S Biochim Biophys Acta; 1987 Oct; 931(1):41-8. PubMed ID: 2820510 [TBL] [Abstract][Full Text] [Related]
24. Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. Aharoni I; Pick E J Leukoc Biol; 1990 Aug; 48(2):107-15. PubMed ID: 2164554 [TBL] [Abstract][Full Text] [Related]
25. Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. Eklund EA; Marshall M; Gibbs JB; Crean CD; Gabig TG J Biol Chem; 1991 Jul; 266(21):13964-70. PubMed ID: 1906890 [TBL] [Abstract][Full Text] [Related]
26. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. Clark RA; Leidal KG; Pearson DW; Nauseef WM J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060 [TBL] [Abstract][Full Text] [Related]
27. Translocation of guinea pig p40-phox during activation of NADPH oxidase. Someya A; Nagaoka I; Nunoi H; Yamashita T Biochim Biophys Acta; 1996 Dec; 1277(3):217-25. PubMed ID: 8982388 [TBL] [Abstract][Full Text] [Related]
28. Stabilization of human neutrophil NADPH oxidase activated in a cell-free system by cytosolic proteins and by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Tamura M; Takeshita M; Curnutte JT; Uhlinger DJ; Lambeth JD J Biol Chem; 1992 Apr; 267(11):7529-38. PubMed ID: 1313806 [TBL] [Abstract][Full Text] [Related]
29. Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system. Lopes LR; Hoyal CR; Knaus UG; Babior BM J Biol Chem; 1999 May; 274(22):15533-7. PubMed ID: 10336447 [TBL] [Abstract][Full Text] [Related]
30. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity. Miki T; Yoshida LS; Kakinuma K J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533 [TBL] [Abstract][Full Text] [Related]
31. The translocation of respiratory burst oxidase components from cytosol to plasma membrane is regulated by guanine nucleotides and diacylglycerol. Park JW; Babior BM J Biol Chem; 1992 Oct; 267(28):19901-6. PubMed ID: 1328185 [TBL] [Abstract][Full Text] [Related]
32. Role of Mg2+ in activation of NADPH oxidase of human neutrophils: evidence that Mg2+ acts through G-protein. Aoyagi K; Takeshige K; Sumimoto H; Nunoi H; Minakami S Biochem Biophys Res Commun; 1992 Jul; 186(1):391-7. PubMed ID: 1321609 [TBL] [Abstract][Full Text] [Related]
33. The O2.- generating oxidase activation of bovine neutrophils. Evidence for synergism of multiple cytosolic factors in a cell-free system. Pilloud MC; Doussiere J; Vignais PV FEBS Lett; 1989 Oct; 257(1):167-70. PubMed ID: 2553488 [TBL] [Abstract][Full Text] [Related]
34. Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide. Kreck ML; Uhlinger DJ; Tyagi SR; Inge KL; Lambeth JD J Biol Chem; 1994 Feb; 269(6):4161-8. PubMed ID: 8307977 [TBL] [Abstract][Full Text] [Related]
35. The effect of anionic amphiphiles on the recruitment of Rac in neutrophils. Nigorikawa K; Okamura N; Hazeki O J Biochem; 2004 Oct; 136(4):463-70. PubMed ID: 15625315 [TBL] [Abstract][Full Text] [Related]
36. Comparison of O2(-)-producing activity of guinea-pig eosinophils and neutrophils in a cell-free system. Someya A; Nagaoka I; Iwabuchi K; Yamashita T Comp Biochem Physiol B; 1991; 100(1):25-30. PubMed ID: 1661659 [TBL] [Abstract][Full Text] [Related]
37. Cytosolic factors involved in the activation of NADPH oxidase from guinea pig neutrophils. Someya A; Yamashita T Arch Biochem Biophys; 1991 Jan; 284(1):17-21. PubMed ID: 1846512 [TBL] [Abstract][Full Text] [Related]
38. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Kwong CH; Malech HL; Rotrosen D; Leto TL Biochemistry; 1993 Jun; 32(21):5711-7. PubMed ID: 8504089 [TBL] [Abstract][Full Text] [Related]
39. Immunoaffinity purification of an oxidase-activating cytosolic complex from bovine neutrophils. Jouan A; Dagher MC; Fuchs A; Foucaud-Gamen J; Vignais PV Biochem Biophys Res Commun; 1993 Dec; 197(3):1296-302. PubMed ID: 8280146 [TBL] [Abstract][Full Text] [Related]
40. Reconstitution and characterization of the human neutrophil respiratory burst oxidase using recombinant p47-phox, p67-phox and plasma membrane. Uhlinger DJ; Inge KL; Kreck ML; Tyagi SR; Neckelmann N; Lambeth JD Biochem Biophys Res Commun; 1992 Jul; 186(1):509-16. PubMed ID: 1321612 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]