These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8392575)

  • 21. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways.
    Sarkadi B; Mack E; Rothstein A
    J Gen Physiol; 1984 Apr; 83(4):513-27. PubMed ID: 6202825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swelling-activated K+ transport via two functionally distinct pathways in eel erythrocytes.
    Bursell JD; Kirk K
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R61-70. PubMed ID: 8769785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between hypotonically-induced taurine and K fluxes in trout red blood cells.
    Kiessling K; Ellory JC; Cossins AR
    Pflugers Arch; 2000 Jul; 440(3):467-75. PubMed ID: 10954334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.
    Lauf PK; Adragna NC
    J Gen Physiol; 1996 Oct; 108(4):341-50. PubMed ID: 8894982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of low ionic strength media on passive human red cell monovalent cation transport.
    Bernhardt I; Hall AC; Ellory JC
    J Physiol; 1991 Mar; 434():489-506. PubMed ID: 2023127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cl-dependent K transport in a pure population of volume-regulating human erythrocytes.
    O'Neill WC
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C858-64. PubMed ID: 2705517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role for the anion exchanger AE1 (band 3 protein) in cell volume regulation.
    Garcia-Romeu F; Borgese F; Guizouarn H; Fiévet B; Motais R
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):985-94. PubMed ID: 8960775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volume-regulating behavior of human platelets.
    Livne A; Grinstein S; Rothstein A
    J Cell Physiol; 1987 Jun; 131(3):354-63. PubMed ID: 2439517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions.
    Bogdanova AY; Virkki LV; Gusev GP; Nikinmaa M
    Toxicol Appl Pharmacol; 1999 Sep; 159(3):204-13. PubMed ID: 10486307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volume-dependent potassium transport in camel red blood cells.
    Gharaibeh NS; Rawashdeh NM
    Membr Biochem; 1993; 10(2):99-106. PubMed ID: 8395642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells.
    Lambert IH; Hoffmann EK; Jørgensen F
    J Membr Biol; 1989 Oct; 111(2):113-31. PubMed ID: 2482360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl- and K+ conductance pathways.
    Sarkadi B; Mack E; Rothstein A
    J Gen Physiol; 1984 Apr; 83(4):497-512. PubMed ID: 6202824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 Nov; 356():21-31. PubMed ID: 6520787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.