These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8392585)

  • 21. Mdx myotubes have normal excitability but show reduced contraction-relaxation dynamics.
    Nicolas-Metral V; Raddatz E; Kucera P; Ruegg UT
    J Muscle Res Cell Motil; 2001; 22(1):69-75. PubMed ID: 11563551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depolarization-induced contraction and SR function in mechanically skinned muscle fibers from dystrophic mdx mice.
    Plant DR; Lynch GS
    Am J Physiol Cell Physiol; 2003 Sep; 285(3):C522-8. PubMed ID: 12724137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle.
    Spencer MJ; Tidball JG
    Exp Cell Res; 1992 Nov; 203(1):107-14. PubMed ID: 1426033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylcholine activates two types of ion channels in sarcolemma from adult muscular dystrophic (mdx) mice.
    Költgen D; Franke C
    Neurosci Lett; 1992 Mar; 137(1):1-4. PubMed ID: 1320748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice.
    Ebihara S; Guibinga GH; Gilbert R; Nalbantoglu J; Massie B; Karpati G; Petrof BJ
    Physiol Genomics; 2000 Sep; 3(3):133-44. PubMed ID: 11015608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel.
    Iwata Y; Katanosaka Y; Arai Y; Komamura K; Miyatake K; Shigekawa M
    J Cell Biol; 2003 Jun; 161(5):957-67. PubMed ID: 12796481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase.
    Johnson BD; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4191-6. PubMed ID: 15753322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse.
    Briguet A; Erb M; Courdier-Fruh I; Barzaghi P; Santos G; Herzner H; Lescop C; Siendt H; Henneboehle M; Weyermann P; Magyar JP; Dubach-Powell J; Metz G; Meier T
    FASEB J; 2008 Dec; 22(12):4190-200. PubMed ID: 18728218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes.
    Suchyna TM; Sachs F
    J Physiol; 2007 May; 581(Pt 1):369-87. PubMed ID: 17255168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dystrophin protects the sarcolemma from stresses developed during muscle contraction.
    Petrof BJ; Shrager JB; Stedman HH; Kelly AM; Sweeney HL
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3710-4. PubMed ID: 8475120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.
    Bellinger AM; Reiken S; Carlson C; Mongillo M; Liu X; Rothman L; Matecki S; Lacampagne A; Marks AR
    Nat Med; 2009 Mar; 15(3):325-30. PubMed ID: 19198614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels.
    Mallouk N; Jacquemond V; Allard B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4950-5. PubMed ID: 10781103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy.
    Pritchard HAT; Pires PW; Yamasaki E; Thakore P; Earley S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9745-E9752. PubMed ID: 30181262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lack of dystrophin but normal calcium homeostasis in smooth muscle from dystrophic mdx mice.
    Boland B; Himpens B; Casteels R; Gillis JM
    J Muscle Res Cell Motil; 1993 Feb; 14(1):133-9. PubMed ID: 8478423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.
    Henríquez-Olguín C; Altamirano F; Valladares D; López JR; Allen PD; Jaimovich E
    Biochim Biophys Acta; 2015 Jul; 1852(7):1410-9. PubMed ID: 25857619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle.
    Tidball JG; Spencer MJ; St Pierre BA
    Exp Cell Res; 1992 Nov; 203(1):141-9. PubMed ID: 1426037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice.
    Haws CM; Lansman JB
    Proc Biol Sci; 1991 Sep; 245(1314):173-7. PubMed ID: 1684042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice.
    De Backer F; Vandebrouck C; Gailly P; Gillis JM
    J Physiol; 2002 Aug; 542(Pt 3):855-65. PubMed ID: 12154184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane abnormalities and Ca homeostasis in muscles of the mdx mouse, an animal model of the Duchenne muscular dystrophy: a review.
    Gillis JM
    Acta Physiol Scand; 1996 Mar; 156(3):397-406. PubMed ID: 8729700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.