These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 8393130)

  • 1. Stationary phase in the yeast Saccharomyces cerevisiae.
    Werner-Washburne M; Braun E; Johnston GC; Singer RA
    Microbiol Rev; 1993 Jun; 57(2):383-401. PubMed ID: 8393130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary phase in Saccharomyces cerevisiae.
    Werner-Washburne M; Braun EL; Crawford ME; Peck VM
    Mol Microbiol; 1996 Mar; 19(6):1159-66. PubMed ID: 8730858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic assessment of stationary phase for cells of the yeast Saccharomyces cerevisiae.
    Drebot MA; Barnes CA; Singer RA; Johnston GC
    J Bacteriol; 1990 Jul; 172(7):3584-9. PubMed ID: 2163381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of proliferation by the budding yeast Saccharomyces cerevisiae.
    Johnston GC; Singer RA
    Biochem Cell Biol; 1990 Feb; 68(2):427-35. PubMed ID: 2160831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2.
    Dumortier F; Argüelles JC; Thevelein JM
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1559-66. PubMed ID: 7551024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.
    Park JI; Grant CM; Attfield PV; Dawes IW
    Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationary phase in yeast.
    Herman PK
    Curr Opin Microbiol; 2002 Dec; 5(6):602-7. PubMed ID: 12457705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae.
    Thevelein JM; de Winde JH
    Mol Microbiol; 1999 Sep; 33(5):904-18. PubMed ID: 10476026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae.
    Chang YW; Howard SC; Budovskaya YV; Rine J; Herman PK
    Genetics; 2001 Jan; 157(1):17-26. PubMed ID: 11139488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p.
    Wang Z; Wilson WA; Fujino MA; Roach PJ
    Mol Cell Biol; 2001 Sep; 21(17):5742-52. PubMed ID: 11486014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase.
    Drebot MA; Johnston GC; Singer RA
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):7948-52. PubMed ID: 3317397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses.
    Park JI; Grant CM; Dawes IW
    Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae.
    Granot D; Snyder M
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5724-8. PubMed ID: 1648229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOR controls translation initiation and early G1 progression in yeast.
    Barbet NC; Schneider U; Helliwell SB; Stansfield I; Tuite MF; Hall MN
    Mol Biol Cell; 1996 Jan; 7(1):25-42. PubMed ID: 8741837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mRNA translation in yeast during entry into stationary phase.
    Dickson LM; Brown AJ
    Mol Gen Genet; 1998 Aug; 259(3):282-93. PubMed ID: 9749671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Sleeping beauty": quiescence in Saccharomyces cerevisiae.
    Gray JV; Petsko GA; Johnston GC; Ringe D; Singer RA; Werner-Washburne M
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):187-206. PubMed ID: 15187181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase.
    Filipak M; Drebot MA; Ireland LS; Singer RA; Johnston GC
    Curr Genet; 1992 Dec; 22(6):471-7. PubMed ID: 1473178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase.
    Ashrafi K; Farazi TA; Gordon JI
    J Biol Chem; 1998 Oct; 273(40):25864-74. PubMed ID: 9748261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.