BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8393280)

  • 1. Activation of epithelial Na+ channels by protein kinase A requires actin filaments.
    Prat AG; Bertorello AM; Ausiello DA; Cantiello HF
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C224-33. PubMed ID: 8393280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin filaments regulate epithelial Na+ channel activity.
    Cantiello HF; Stow JL; Prat AG; Ausiello DA
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C882-8. PubMed ID: 1659214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasopressin and protein kinase A activate G protein-sensitive epithelial Na+ channels.
    Prat AG; Ausiello DA; Cantiello HF
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C218-23. PubMed ID: 8393279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of epithelial sodium channels by short actin filaments.
    Berdiev BK; Prat AG; Cantiello HF; Ausiello DA; Fuller CM; Jovov B; Benos DJ; Ismailov II
    J Biol Chem; 1996 Jul; 271(30):17704-10. PubMed ID: 8663510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear ion channel activity is regulated by actin filaments.
    Prat AG; Cantiello HF
    Am J Physiol; 1996 May; 270(5 Pt 1):C1532-43. PubMed ID: 8967456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking action of cytochalasin D on protein kinase A stimulation of a stretch-activated cation channel in renal epithelial A6 cells.
    Niisato N; Marunaka Y
    Biochem Pharmacol; 2001 Mar; 61(6):761-5. PubMed ID: 11266662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP-independent regulation of CFTR by the actin cytoskeleton.
    Prat AG; Xiao YF; Ausiello DA; Cantiello HF
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the actin cytoskeleton on epithelial Na+ channel regulation.
    Cantiello HF
    Kidney Int; 1995 Oct; 48(4):970-84. PubMed ID: 8569107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation by phosphorylation of purified epithelial Na+ channels in planar lipid bilayers.
    Oh Y; Smith PR; Bradford AL; Keeton D; Benos DJ
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C85-91. PubMed ID: 8393286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Na+-permeant cation channel by stretch and cyclic AMP-dependent phosphorylation in renal epithelial A6 cells.
    Marunaka Y; Shintani Y; Downey GP; Niisato N
    J Gen Physiol; 1997 Sep; 110(3):327-36. PubMed ID: 9276757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct.
    Wang WH; Cassola A; Giebisch G
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F592-8. PubMed ID: 7943357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel.
    Prat AG; Holtzman EJ; Brown D; Cunningham CC; Reisin IL; Kleyman TR; McLaughlin M; Jackson GR; Lydon J; Cantiello HF
    J Biol Chem; 1996 Jul; 271(30):18045-53. PubMed ID: 8663566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of actin in regulation of epithelial sodium channels by CFTR.
    Ismailov II; Berdiev BK; Shlyonsky VG; Fuller CM; Prat AG; Jovov B; Cantiello HF; Ausiello DA; Benos DJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1077-86. PubMed ID: 9142832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leptin activation of ATP-sensitive K+ (KATP) channels in rat CRI-G1 insulinoma cells involves disruption of the actin cytoskeleton.
    Harvey J; Hardy SC; Irving AJ; Ashford ML
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):95-107. PubMed ID: 10944173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of epithelial Na+ channels from M-1 cortical collecting duct cells.
    Chalfant ML; Peterson-Yantorno K; O'Brien TG; Civan MM
    Am J Physiol; 1996 Oct; 271(4 Pt 2):F861-70. PubMed ID: 8898016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of actin filaments increases the activity of sodium-conducting channels in human myeloid leukemia cells.
    Negulyaev YA; Vedernikova EA; Maximov AV
    Mol Biol Cell; 1996 Dec; 7(12):1857-64. PubMed ID: 8970150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of epithelial Na+ channel activity by long-chain n-3 fatty acids.
    Mies F; Shlyonsky V; Goolaerts A; Sariban-Sohraby S
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F850-5. PubMed ID: 15198929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase A phosphorylation and G protein regulation of type II pneumocyte Na+ channels in lipid bilayers.
    Berdiev BK; Shlyonsky VG; Senyk O; Keeton D; Guo Y; Matalon S; Cantiello HF; Prat AG; Ausiello DA; Ismailov II; Benos DJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1262-70. PubMed ID: 9142851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase A phosphorylation and G protein regulation of purified renal Na+ channels in planar bilayer membranes.
    Ismailov II; McDuffie JH; Benos DJ
    J Biol Chem; 1994 Apr; 269(14):10235-41. PubMed ID: 8144604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase A reduces voltage-dependent Na+ current in Xenopus oocytes.
    Gershon E; Weigl L; Lotan I; Schreibmayer W; Dascal N
    J Neurosci; 1992 Oct; 12(10):3743-52. PubMed ID: 1383476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.