These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8394000)

  • 1. Surface motifs by a computer vision technique: searches, detection, and implications for protein-ligand recognition.
    Fischer D; Norel R; Wolfson H; Nussinov R
    Proteins; 1993 Jul; 16(3):278-92. PubMed ID: 8394000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium, multiple-timescale simulations of ligand-receptor interactions in structured protein systems.
    Zhang Y; Peters MH; Li Y
    Proteins; 2003 Aug; 52(3):339-48. PubMed ID: 12866048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible docking allowing induced fit in proteins: insights from an open to closed conformational isomers.
    Sandak B; Wolfson HJ; Nussinov R
    Proteins; 1998 Aug; 32(2):159-74. PubMed ID: 9714156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of shape complementarity in docking of unbound proteins.
    Norel R; Petrey D; Wolfson HJ; Nussinov R
    Proteins; 1999 Aug; 36(3):307-17. PubMed ID: 10409824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular surface complementarity at protein-protein interfaces: the critical role played by surface normals at well placed, sparse, points in docking.
    Norel R; Lin SL; Wolfson HJ; Nussinov R
    J Mol Biol; 1995 Sep; 252(2):263-73. PubMed ID: 7674306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient automated computer vision based technique for detection of three dimensional structural motifs in proteins.
    Fischer D; Bachar O; Nussinov R; Wolfson H
    J Biomol Struct Dyn; 1992 Feb; 9(4):769-89. PubMed ID: 1616630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking of small ligands to low-resolution and theoretically predicted receptor structures.
    Wojciechowski M; Skolnick J
    J Comput Chem; 2002 Jan; 23(1):189-97. PubMed ID: 11913386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FLIPDock: docking flexible ligands into flexible receptors.
    Zhao Y; Sanner MF
    Proteins; 2007 Aug; 68(3):726-37. PubMed ID: 17523154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric and chemical patterns of interaction in protein--ligand complexes and their application in docking.
    Moreno E; León K
    Proteins; 2002 Apr; 47(1):1-13. PubMed ID: 11870860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies.
    Kämper A; Apostolakis J; Rarey M; Marian CM; Lengauer T
    J Chem Inf Model; 2006; 46(2):903-11. PubMed ID: 16563022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif.
    Jensen GA; Andersen OM; Bonvin AM; Bjerrum-Bohr I; Etzerodt M; Thøgersen HC; O'Shea C; Poulsen FM; Kragelund BB
    J Mol Biol; 2006 Sep; 362(4):700-16. PubMed ID: 16938309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons.
    Morris RJ; Najmanovich RJ; Kahraman A; Thornton JM
    Bioinformatics; 2005 May; 21(10):2347-55. PubMed ID: 15728116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria.
    Peters KP; Fauck J; Frömmel C
    J Mol Biol; 1996 Feb; 256(1):201-13. PubMed ID: 8609611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a genetic algorithm for flexible docking.
    Jones G; Willett P; Glen RC; Leach AR; Taylor R
    J Mol Biol; 1997 Apr; 267(3):727-48. PubMed ID: 9126849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.