These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inescapable shock-induced potentiation of morphine analgesia. Sutton LC; Lea SE; Will MJ; Schwartz BA; Hartley CE; Poole JC; Watkins LR; Maier SF Behav Neurosci; 1997 Oct; 111(5):1105-13. PubMed ID: 9383528 [TBL] [Abstract][Full Text] [Related]
3. Contribution of different opioid systems to footshock-induced analgesia and motor suppression. Nabeshima T; Yamada K; Kameyama T Eur J Pharmacol; 1983 Sep; 92(3-4):199-205. PubMed ID: 6138260 [TBL] [Abstract][Full Text] [Related]
4. Long-term changes induced by developmental handling on pain threshold: effects of morphine and naloxone. Pieretti S; d'Amore A; Loizzo A Behav Neurosci; 1991 Feb; 105(1):215-8. PubMed ID: 1851017 [TBL] [Abstract][Full Text] [Related]
5. Interactions between NTS2 neurotensin and opioid receptors on two nociceptive responses assessed on the hot plate test in mice. Bredeloux P; Costentin J; Dubuc I Behav Brain Res; 2006 Dec; 175(2):399-407. PubMed ID: 17074405 [TBL] [Abstract][Full Text] [Related]
6. Involvement of spinal kappa opioid receptors in a type of footshock induced analgesia in mice. Menendez L; Andres-Trelles F; Hidalgo A; Baamonde A Brain Res; 1993 May; 611(2):264-71. PubMed ID: 8392894 [TBL] [Abstract][Full Text] [Related]
7. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171 [TBL] [Abstract][Full Text] [Related]
8. Differential actions of the blockade of spinal opioid, adrenergic and serotonergic receptors on the tail-flick inhibition induced by morphine microinjected into dorsal raphe and central gray in rats. Tseng LL; Tang R Neuroscience; 1989; 33(1):93-100. PubMed ID: 2557562 [TBL] [Abstract][Full Text] [Related]
9. The effect of neonatal exposure to chronic footshock on pain-responsiveness and sensitivity to morphine after maturation in the rat. Shimada C; Kurumiya S; Noguchi Y; Umemoto M Behav Brain Res; 1990 Jan; 36(1-2):105-11. PubMed ID: 2154233 [TBL] [Abstract][Full Text] [Related]
10. Differing mechanisms for proactive effects of intermittent and single shock on gastric ulceration. Overmier JB; Murison R Physiol Behav; 1994 Nov; 56(5):913-9. PubMed ID: 7824591 [TBL] [Abstract][Full Text] [Related]
11. Activation and expression of endogenous pain control mechanisms in rats given repeated nociceptive tests under the influence of naloxone. Rochford J; Stewart J Behav Neurosci; 1987 Feb; 101(1):87-103. PubMed ID: 3030357 [TBL] [Abstract][Full Text] [Related]
12. Examination of the involvement of supraspinal and spinal mu and delta opioid receptors in analgesia using the mu receptor deficient CXBK mouse. Vaught JL; Mathiasen JR; Raffa RB J Pharmacol Exp Ther; 1988 Apr; 245(1):13-6. PubMed ID: 2834533 [TBL] [Abstract][Full Text] [Related]
14. Stress-induced analgesia in frogs: evidence for the involvement of an opioid system. Pezalla PD; Dicig M Brain Res; 1984 Apr; 296(2):356-60. PubMed ID: 6322930 [TBL] [Abstract][Full Text] [Related]
15. GABA(B) receptors and opioid mechanisms involved in homotaurine-induced analgesia. Serrano MI; Serrano JS; Fernández A; Asadi I; Serrano-Martino MC Gen Pharmacol; 1998 Mar; 30(3):411-5. PubMed ID: 9510095 [TBL] [Abstract][Full Text] [Related]
16. Prevention of stress-induced analgesia by substance P. Hall ME; Stewart JM Behav Brain Res; 1983 Dec; 10(2-3):375-82. PubMed ID: 6197980 [TBL] [Abstract][Full Text] [Related]
17. μ-Opioid and N-methyl-D-aspartate receptors in the amygdala contribute to minocycline-induced potentiation of morphine analgesia in rats. Ghazvini H; Rezayof A; Ghasemzadeh Z; Zarrindast MR Behav Pharmacol; 2015 Jun; 26(4):383-92. PubMed ID: 25563202 [TBL] [Abstract][Full Text] [Related]