BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8394338)

  • 1. Multifunctional RNA polymerase II initiation factor delta from rat liver. Relationship between carboxyl-terminal domain kinase, ATPase, and DNA helicase activities.
    Serizawa H; Conaway RC; Conaway JW
    J Biol Chem; 1993 Aug; 268(23):17300-8. PubMed ID: 8394338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH.
    Roy R; Schaeffer L; Humbert S; Vermeulen W; Weeda G; Egly JM
    J Biol Chem; 1994 Apr; 269(13):9826-32. PubMed ID: 7511595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription.
    Serizawa H; Conaway JW; Conaway RC
    Nature; 1993 May; 363(6427):371-4. PubMed ID: 8497323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver.
    Serizawa H; Conaway RC; Conaway JW
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7476-80. PubMed ID: 1386928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH.
    Serizawa H; Conaway JW; Conaway RC
    J Biol Chem; 1994 Aug; 269(32):20750-6. PubMed ID: 8051177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor.
    Schaeffer L; Roy R; Humbert S; Moncollin V; Vermeulen W; Hoeijmakers JH; Chambon P; Egly JM
    Science; 1993 Apr; 260(5104):58-63. PubMed ID: 8465201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of assembly of the RNA polymerase II preinitiation complex. Transcription factors delta and epsilon promote stable binding of the transcription apparatus to the initiator element.
    Conaway JW; Bradsher JN; Conaway RC
    J Biol Chem; 1992 May; 267(14):10142-8. PubMed ID: 1577784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation.
    Ohkuma Y; Roeder RG
    Nature; 1994 Mar; 368(6467):160-3. PubMed ID: 8166891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTD kinase associated with yeast RNA polymerase II initiation factor b.
    Feaver WJ; Gileadi O; Li Y; Kornberg RD
    Cell; 1991 Dec; 67(6):1223-30. PubMed ID: 1836979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function.
    Garrett KP; Serizawa H; Hanley JP; Bradsher JN; Tsuboi A; Arai N; Yokota T; Arai K; Conaway RC; Conaway JW
    J Biol Chem; 1992 Nov; 267(33):23942-9. PubMed ID: 1429731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter escape by RNA polymerase II. Formation of an escape-competent transcriptional intermediate is a prerequisite for exit of polymerase from the promoter.
    Dvir A; Tan S; Conaway JW; Conaway RC
    J Biol Chem; 1997 Nov; 272(45):28175-8. PubMed ID: 9353262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccinia virion protein I8R has both DNA and RNA helicase activities: implications for vaccinia virus transcription.
    Bayliss CD; Smith GL
    J Virol; 1996 Feb; 70(2):794-800. PubMed ID: 8551617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II.
    Lu H; Zawel L; Fisher L; Egly JM; Reinberg D
    Nature; 1992 Aug; 358(6388):641-5. PubMed ID: 1495560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II.
    Dubois MF; Vincent M; Vigneron M; Adamczewski J; Egly JM; Bensaude O
    Nucleic Acids Res; 1997 Feb; 25(4):694-700. PubMed ID: 9016617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial purification and characterization of two distinct protein kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase subunit IIa.
    Payne JM; Dahmus ME
    J Biol Chem; 1993 Jan; 268(1):80-7. PubMed ID: 8416977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization.
    Sherman G; Gottlieb J; Challberg MD
    J Virol; 1992 Aug; 66(8):4884-92. PubMed ID: 1321275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I.
    Lee JM; Greenleaf AL
    J Biol Chem; 1997 Apr; 272(17):10990-3. PubMed ID: 9110987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A maltose-binding protein/adeno-associated virus Rep68 fusion protein has DNA-RNA helicase and ATPase activities.
    Wonderling RS; Kyöstiö SR; Owens RA
    J Virol; 1995 Jun; 69(6):3542-8. PubMed ID: 7538173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine phosphorylation of RNA polymerase II carboxyl-terminal domain by the Abl-related gene product.
    Baskaran R; Chiang GG; Mysliwiec T; Kruh GD; Wang JY
    J Biol Chem; 1997 Jul; 272(30):18905-9. PubMed ID: 9228069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain.
    Herrmann CH; Gold MO; Rice AP
    Nucleic Acids Res; 1996 Feb; 24(3):501-8. PubMed ID: 8602364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.