These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8394788)

  • 1. The ontogeny of repetitive firing and its modulation by norepinephrine in rat neocortical neurons.
    Lorenzon NM; Foehring RC
    Brain Res Dev Brain Res; 1993 Jun; 73(2):213-23. PubMed ID: 8394788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner.
    Moyer JR; Thompson LT; Black JP; Disterhoft JF
    J Neurophysiol; 1992 Dec; 68(6):2100-9. PubMed ID: 1491260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
    Foehring RC; Schwindt PC; Crill WE
    J Neurophysiol; 1989 Feb; 61(2):245-56. PubMed ID: 2918353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in intracellular calcium chelation reproduce developmental differences in repetitive firing and afterhyperpolarizations in rat neocortical neurons.
    Lorenzon NM; Foehring RC
    Brain Res Dev Brain Res; 1995 Feb; 84(2):192-203. PubMed ID: 7743638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity in the interaction of high-voltage-activated Ca
    Kirchner MK; Foehring RC; Callaway J; Armstrong WE
    J Neurophysiol; 2018 Oct; 120(4):1728-1739. PubMed ID: 30020842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylinositol 4,5-bisphosphate (PIP
    Kirchner MK; Foehring RC; Wang L; Chandaka GK; Callaway JC; Armstrong WE
    J Physiol; 2017 Jul; 595(14):4927-4946. PubMed ID: 28383826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones.
    Dutia MB; Johnston AR
    Exp Brain Res; 1998 Jan; 118(2):148-54. PubMed ID: 9547083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons.
    Pineda JC; Galarraga E; Bargas J; Cristancho M; Aceves J
    J Neurophysiol; 1992 Jul; 68(1):287-94. PubMed ID: 1381420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive firing and oscillatory activity of pyramidal-like bursting neurons in the rat subiculum.
    Mattia D; Kawasaki H; Avoli M
    Exp Brain Res; 1997 May; 114(3):507-17. PubMed ID: 9187287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Ca2+ source for slow AHP in completely adapting and repetitive firing pyramidal neurons.
    Pineda JC; Galarraga E; Foehring RC
    Neuroreport; 1999 Jun; 10(9):1951-6. PubMed ID: 10501539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological properties and their modulation by norepinephrine in the ambiguus neurons of the guinea pig.
    Nishimura Y; Muramatsu M; Asahara T; Tanaka T; Yamamoto T
    Brain Res; 1995 Dec; 702(1-2):213-22. PubMed ID: 8846079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons.
    Faber ES; Sah P
    Eur J Neurosci; 2005 Oct; 22(7):1627-35. PubMed ID: 16197503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca²⁺ dependence and differential modulation by norepinephrine.
    Guan D; Armstrong WE; Foehring RC
    J Neurophysiol; 2015 Apr; 113(7):2014-32. PubMed ID: 25568159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Inhibition of Ca2+ channels by alpha2-adrenoceptors in three functional subclasses of rat sympathetic neurons.
    Li C; Horn JP
    J Neurophysiol; 2008 Dec; 100(6):3055-63. PubMed ID: 18922949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.