BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8395049)

  • 1. Peripheral blood progenitors as a target for genetic correction of p47phox-deficient chronic granulomatous disease.
    Sekhsaria S; Gallin JI; Linton GF; Mallory RM; Mulligan RC; Malech HL
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7446-50. PubMed ID: 8395049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD34+ peripheral blood progenitors as a target for genetic correction of the two flavocytochrome b558 defective forms of chronic granulomatous disease.
    Li F; Linton GF; Sekhsaria S; Whiting-Theobald N; Katkin JP; Gallin JI; Malech HL
    Blood; 1994 Jul; 84(1):53-8. PubMed ID: 7517218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retroviral expression of recombinant p47phox protein by Epstein-Barr virus-transformed B lymphocytes from a patient with autosomal chronic granulomatous disease.
    Cobbs CS; Malech HL; Leto TL; Freeman SM; Blaese RM; Gallin JI; Lomax KJ
    Blood; 1992 Apr; 79(7):1829-35. PubMed ID: 1313715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-selected complete restoration of superoxide generation in Epstein-Barr virus-transformed B cells from p47phox-deficient chronic granulomatous disease patients by using a bicistronic retrovirus vector encoding a human multi-drug resistance gene (MDR1) and the p47phox gene.
    Iwata M; Nunoi H; Matsuda I; Kanegasaki S; Tsuruo T; Sugimoto Y
    Hum Genet; 1998 Oct; 103(4):419-23. PubMed ID: 9856484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reconstitution of the NADPH-oxidase by adeno-associated virus gene transfer.
    Thrasher AJ; de Alwis M; Casimir CM; Kinnon C; Page K; Lebkowski J; Segal AW; Levinsky RJ
    Blood; 1995 Jul; 86(2):761-5. PubMed ID: 7606005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-linked chronic granulomatous disease: correction of NADPH oxidase defect by retrovirus-mediated expression of gp91-phox.
    Porter CD; Parkar MH; Levinsky RJ; Collins MK; Kinnon C
    Blood; 1993 Oct; 82(7):2196-202. PubMed ID: 8400270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer.
    Thrasher A; Chetty M; Casimir C; Segal AW
    Blood; 1992 Sep; 80(5):1125-9. PubMed ID: 1325210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transfer to primary chronic granulomatous disease monocytes.
    Thrasher AJ; Casimir CM; Kinnon C; Morgan G; Segal AW; Levinsky RJ
    Lancet; 1995 Jul; 346(8967):92-3. PubMed ID: 7541496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic correction of p67phox deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer.
    Weil WM; Linton GF; Whiting-Theobald N; Vowells SJ; Rafferty SP; Li F; Malech HL
    Blood; 1997 Mar; 89(5):1754-61. PubMed ID: 9057660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p47phox mouse knock-out model of chronic granulomatous disease.
    Jackson SH; Gallin JI; Holland SM
    J Exp Med; 1995 Sep; 182(3):751-8. PubMed ID: 7650482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bicistronic retrovirus vector containing a picornavirus internal ribosome entry site allows for correction of X-linked CGD by selection for MDR1 expression.
    Sokolic RA; Sekhsaria S; Sugimoto Y; Whiting-Theobald N; Linton GF; Li F; Gottesman MM; Malech HL
    Blood; 1996 Jan; 87(1):42-50. PubMed ID: 8547675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NADPH oxidase and chronic granulomatous disease.
    Segal AW
    Mol Med Today; 1996 Mar; 2(3):129-35. PubMed ID: 8796870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O2- production by B lymphocytes lacking the respiratory burst oxidase subunit p47phox after transfection with an expression vector containing a p47phox cDNA.
    Chanock SJ; Faust LR; Barrett D; Bizal C; Maly FE; Newburger PE; Ruedi JM; Smith RM; Babior BM
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10174-7. PubMed ID: 1332032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in gene therapy for chronic granulomatous disease.
    Malech HL
    J Infect Dis; 1999 Mar; 179 Suppl 2():S318-25. PubMed ID: 10081502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene therapy of chronic granulomatous disease (CGD) by gene transfer into hematopoietic stem cells.
    Zentilin L; Tafuro S; Serra C; Falaschi A; Giacca M
    Ann Ist Super Sanita; 1998; 34(4):447-55. PubMed ID: 10234875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease.
    Mardiney M; Jackson SH; Spratt SK; Li F; Holland SM; Malech HL
    Blood; 1997 Apr; 89(7):2268-75. PubMed ID: 9116268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for chronic granulomatous disease.
    Barese CN; Goebel WS; Dinauer MC
    Expert Opin Biol Ther; 2004 Sep; 4(9):1423-34. PubMed ID: 15335310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils.
    Kang EM; Choi U; Theobald N; Linton G; Long Priel DA; Kuhns D; Malech HL
    Blood; 2010 Jan; 115(4):783-91. PubMed ID: 19965657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic granulomatous disease: towards gene therapy.
    Thrasher A; Segal A; Casimir C
    Immunodeficiency; 1993; 4(1-4):327-33. PubMed ID: 8167728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional reconstitution of oxidase activity in X-linked chronic granulomatous disease by retrovirus-mediated gene transfer.
    Zentilin L; Tafuro S; Grassi G; Garcia R; Ventura A; Baralle F; Falaschi A; Giacca M
    Exp Cell Res; 1996 Jun; 225(2):257-67. PubMed ID: 8660913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.