BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8395148)

  • 1. Molecular immunopathogenesis of myasthenia gravis using MHC class II mutant and transgenic mice.
    Shenoy M; David C; Oshima M; Atassi MZ; Christadoss P
    Ann N Y Acad Sci; 1993 Jun; 681():329-31. PubMed ID: 8395148
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular immunopathogenesis of experimental autoimmune myasthenia gravis.
    Christadoss P; Shenoy M
    Reg Immunol; 1992; 4(5):314-20. PubMed ID: 1337839
    [No Abstract]   [Full Text] [Related]  

  • 3. Immunogenetic mechanisms in myasthenia gravis.
    Steinman L
    Prog Brain Res; 1990; 84():117-24. PubMed ID: 2267289
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of major histocompatibility complex genes in myasthenia gravis and experimental autoimmune myasthenia gravis pathogenesis.
    Kaul R; Shenoy M; Christadoss P
    Adv Neuroimmunol; 1994; 4(4):387-402. PubMed ID: 7536602
    [No Abstract]   [Full Text] [Related]  

  • 5. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis.
    Kaul R; Shenoy M; Goluszko E; Christadoss P
    J Immunol; 1994 Mar; 152(6):3152-7. PubMed ID: 8144909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clonal anergy of I-E-tolerant T cells in transgenic mice with pancreatic expression of MHC class II I-E.
    Burkly LC; Lo D; Kanagawa O; Brinster RL; Flavell RA
    Cold Spring Harb Symp Quant Biol; 1989; 54 Pt 2():815-20. PubMed ID: 2518011
    [No Abstract]   [Full Text] [Related]  

  • 7. Immune response gene control of lymphocyte proliferation induced by acetylcholine receptor-specific helper factor derived from lymphocytes of myasthenic mice.
    Christadoss P; Lindstrom JM; Talal N; Duvic CR; Kalantri A; Shenoy M
    J Immunol; 1986 Sep; 137(6):1845-9. PubMed ID: 2943805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a mouse model of myasthenia gravis which mimics human myasthenia gravis pathogenesis for immune intervention.
    Christadoss P; Kaul R; Shenoy M; Goluszko E
    Adv Exp Med Biol; 1995; 383():195-9. PubMed ID: 8644502
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors.
    Christadoss P; Lennon VA; Krco CJ; David CS
    J Immunol; 1982 Mar; 128(3):1141-4. PubMed ID: 6799570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of antigen-specific therapies for autoimmune disease.
    Steinman L
    Mol Biol Med; 1990 Aug; 7(4):333-9. PubMed ID: 2233245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes.
    Infante AJ; Thompson PA; Krolick KA; Wall KA
    J Immunol; 1991 May; 146(9):2977-82. PubMed ID: 1707927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular probing of disease susceptibility genes in myasthenia gravis patients: an analysis of T-cell receptor and HLA class II genes using restriction fragment length polymorphism.
    Smith CI; Borgonovo L; Carlsson B; Hammarström L; Rabbitts TH
    Ann N Y Acad Sci; 1987; 505():388-97. PubMed ID: 3120635
    [No Abstract]   [Full Text] [Related]  

  • 13. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex.
    Schwartz RH
    Annu Rev Immunol; 1985; 3():237-61. PubMed ID: 2415139
    [No Abstract]   [Full Text] [Related]  

  • 14. The interactions between antigen-presenting cells (APC) and T lymphocytes.
    Cohen IR
    Ann Immunol (Paris); 1984; 135C(3):400-2. PubMed ID: 6433777
    [No Abstract]   [Full Text] [Related]  

  • 15. Coimmunization of MHC class II competitor peptides during experimental autoimmune myasthenia gravis induction resulted not only in a suppressed, but also in an altered immune response.
    Wauben MH; Hoedemaekers AC; Graus YM; Wagenaar JP; Van Eden W; De Baets MH
    Ann N Y Acad Sci; 1998 May; 841():338-41. PubMed ID: 9668254
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of peptide: HLA class II complexes to study specific T cells in autoimmune myasthenia gravis.
    Kishore U; Zhang W; Corlett L; Waters P; Glaichenhaus N; Willcox N
    Ann N Y Acad Sci; 2003 Sep; 998():339-42. PubMed ID: 14592893
    [No Abstract]   [Full Text] [Related]  

  • 17. Production of anti-acetylcholine receptor-alpha antibody in vitro by peripheral blood lymphocytes of patients with myasthenia gravis: role of immunoregulatory T cells and monocytes.
    Ofosu-Appiah W; Mokhtarian F; Shirazian D; Grob D
    J Lab Clin Med; 1994 Aug; 124(2):231-41. PubMed ID: 8051487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic control of autoimmunity to acetylcholine receptors: role of Ia molecules.
    Christadoss P; Lennon VA; Krco CJ; Lambert EH; David CS
    Ann N Y Acad Sci; 1981; 377():258-77. PubMed ID: 6803646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunogenetics of myasthenia gravis, multiple sclerosis and their animal models.
    Tournier-Lasserve E; Bach JF
    J Neuroimmunol; 1993 Sep; 47(2):103-14. PubMed ID: 8370764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.