These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 839527)

  • 21. Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis. Consequences for bilayer stability and cell shape.
    Haest CW; Plasa G; Deuticke B
    Biochim Biophys Acta; 1981 Dec; 649(3):701-8. PubMed ID: 7317423
    [No Abstract]   [Full Text] [Related]  

  • 22. Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation.
    Rumsby MG; Trotter J; Allan D; Michell RH
    Biochem Soc Trans; 1977; 5(1):126-8. PubMed ID: 892138
    [No Abstract]   [Full Text] [Related]  

  • 23. Fluorescence studies of red blood cell membranes from individuals with Huntington's disease.
    Sumbilla C; Lakowicz JR
    J Neurochem; 1982 Jun; 38(6):1699-708. PubMed ID: 6210762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural analysis of membranes by means of a nuclear reaction.
    Wiezorek C
    J Mol Biol; 1982 Jan; 154(1):159-67. PubMed ID: 7077660
    [No Abstract]   [Full Text] [Related]  

  • 25. Modulation of the organization of erythrocyte membrane phospholipids by cytoplasmic ATP. The susceptibility of isoionic human erythrocytes ghosts to attack by detergents and phospholipase C.
    Shukla SD; Billah MM; Coleman R; Finean JB; Michell RH
    Biochim Biophys Acta; 1978 May; 509(1):48-57. PubMed ID: 647008
    [No Abstract]   [Full Text] [Related]  

  • 26. Protoporphyrin-sensitized photodamage in isolated membranes of human erythrocytes.
    Girotti AW
    Biochemistry; 1979 Oct; 18(20):4403-11. PubMed ID: 158380
    [No Abstract]   [Full Text] [Related]  

  • 27. Glycocholate can remove lipid and protein components from the outer leaflet of the plasma membrane without causing cell lysis.
    Coleman R; Holdsworth G; Vyvoda OS
    Biochem Soc Trans; 1976; 4(2):244. PubMed ID: 1001659
    [No Abstract]   [Full Text] [Related]  

  • 28. Membrane composition affects characteristics of glycocholate-induced lysis of erythrocytes [proceedings].
    Coleman R; Billington D
    Biochem Soc Trans; 1979 Oct; 7(5):948. PubMed ID: 510753
    [No Abstract]   [Full Text] [Related]  

  • 29. Dissociation and reconstitution of human erythrocyte membrane proteins using 3,4,5,6-tetrahydrophthalic anhydride.
    Howlett GJ; Wardrop AJ
    Arch Biochem Biophys; 1978 Jun; 188(2):429-37. PubMed ID: 677908
    [No Abstract]   [Full Text] [Related]  

  • 30. Red blood cell membrane microviscosity correlates with posttransfusion survival.
    McLean LR; Grote C; Silberstein EB; McGill M
    Biochem Biophys Res Commun; 1988 Jul; 154(1):387-91. PubMed ID: 3395339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complement-induced decrease in membrane mobility: introducing a more sensitive index of spin-label motion.
    Mason RP; Giavedoni EB; Dalmasso AP
    Biochemistry; 1977 Mar; 16(6):1196-201. PubMed ID: 191062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of the holes in human erythrocyte membrane ghosts.
    Lieber MR; Steck TL
    J Biol Chem; 1982 Oct; 257(19):11660-6. PubMed ID: 6811585
    [No Abstract]   [Full Text] [Related]  

  • 33. The membrane and the lesions of storage in preserved red cells.
    Wolfe LC
    Transfusion; 1985; 25(3):185-203. PubMed ID: 3890284
    [No Abstract]   [Full Text] [Related]  

  • 34. A method for measuring membrane microviscosity using pyrene excimer formation. Application to human erythrocyte ghosts.
    Dembo M; Glushko V; Aberlin ME; Sonenberg M
    Biochim Biophys Acta; 1979 Apr; 552(2):201-11. PubMed ID: 444502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The locations of the three cysteine residues in the primary structure of the intrinsic segments of band 3 protein, and implications concerning the arrangement of band 3 protein in the bilayer.
    Ramjeesingh M; Gaarn A; Rothstein A
    Biochim Biophys Acta; 1983 Mar; 729(1):150-60. PubMed ID: 6830782
    [No Abstract]   [Full Text] [Related]  

  • 36. Red cell membrane glycophorin labeling from within the lipid bilayer.
    Kahane I; Gitler C
    Science; 1978 Jul; 201(4353):351-2. PubMed ID: 663661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased iodination of the red cell surface following phospholipase C treatment.
    Reichstein E; Blostein R
    Biochim Biophys Acta; 1977 Aug; 468(3):502-6. PubMed ID: 195610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particle-aggregated ghost membranes.
    Brown D; Montesano R; Orci L
    J Histochem Cytochem; 1982 Jul; 30(7):702-6. PubMed ID: 7108195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Huntington's disease: a generalized membrane defect.
    Butterfield DA; Markesbery WR
    Life Sci; 1981 Mar; 28(10):1117-31. PubMed ID: 6262588
    [No Abstract]   [Full Text] [Related]  

  • 40. Asymmetry in the renewal of molecular classes of phosphatidylcholine in the rat-erythrocyte membrane.
    Renooij W; Van Golde LM
    Biochim Biophys Acta; 1979 Dec; 558(3):314-9. PubMed ID: 508751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.