These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 8395503)
41. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
42. Evidence from 13C NMR for protonation of carbamyl-P and N-(phosphonacetyl)-L-aspartate in the active site of aspartate transcarbamylase. Roberts MF; Opella SJ; Schaffer MH; Phillips HM; Stark GR J Biol Chem; 1976 Oct; 251(19):5976-85. PubMed ID: 9410 [TBL] [Abstract][Full Text] [Related]
43. Catalytic domains of carbamyl phosphate synthetase. Glutamine-hydrolyzing site of Escherichia coli carbamyl phosphate synthetase. Rubino SD; Nyunoya H; Lusty CJ J Biol Chem; 1986 Aug; 261(24):11320-7. PubMed ID: 3525565 [TBL] [Abstract][Full Text] [Related]
44. Biochemical and genetic characterization of a carbamyl phosphate synthetase mutant of Escherichia coli K12. Bolivar F; Galván M; Martuscelli J J Gen Microbiol; 1976 May; 94(1):142-8. PubMed ID: 180236 [TBL] [Abstract][Full Text] [Related]
45. Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Villeret V; Tricot C; Stalon V; Dideberg O Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10762-6. PubMed ID: 7479879 [TBL] [Abstract][Full Text] [Related]
46. Arginine-specific carbamoyl phosphate metabolism in mitochondria of Neurospora crassa. Channeling and control by arginine. Davis RH; Ristow JL J Biol Chem; 1987 May; 262(15):7109-17. PubMed ID: 2953716 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria. Wanders RJ; Van Roermund CW; Meijer AJ Eur J Biochem; 1984 Jul; 142(2):247-54. PubMed ID: 6745275 [TBL] [Abstract][Full Text] [Related]
48. Mechanism of inactivation of ornithine transcarbamoylase by Ndelta -(N'-Sulfodiaminophosphinyl)-L-ornithine, a true transition state analogue? Crystal structure and implications for catalytic mechanism. Langley DB; Templeton MD; Fields BA; Mitchell RE; Collyer CA J Biol Chem; 2000 Jun; 275(26):20012-9. PubMed ID: 10747936 [TBL] [Abstract][Full Text] [Related]
49. Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism. Lee BH; Ley BW; Kantrowitz ER; O'Leary MH; Wedler FC J Biol Chem; 1995 Jun; 270(26):15620-7. PubMed ID: 7797560 [TBL] [Abstract][Full Text] [Related]
50. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate. Yon RJ Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473 [TBL] [Abstract][Full Text] [Related]
51. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase. Murata LB; Schachman HK Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761 [TBL] [Abstract][Full Text] [Related]
52. Ornithine transcarbamylase from Mycobacterium smegmatis ATCC 14468: purification, properties, and reaction mechanism. Ahmad S; Bhatnagar RK; Venkitasubramanian TA Biochem Cell Biol; 1986 Dec; 64(12):1349-55. PubMed ID: 3566963 [TBL] [Abstract][Full Text] [Related]
53. Steady-state kinetics and isotope effects on the mutant catalytic trimer of aspartate transcarbamoylase containing the replacement of histidine 134 by alanine. Waldrop GL; Turnbull JL; Parmentier LE; O'Leary MH; Cleland WW; Schachman HK Biochemistry; 1992 Jul; 31(28):6585-91. PubMed ID: 1633170 [TBL] [Abstract][Full Text] [Related]
54. cDNA cloning of two isoforms of ornithine carbamoyltransferase from Canavalia lineata leaves and the effect of site-directed mutagenesis of the carbamoyl phosphate binding site. Lee Y; Choi YA; Hwang ID; Kim SG; Kwon YM Plant Mol Biol; 2001 Aug; 46(6):651-60. PubMed ID: 11575720 [TBL] [Abstract][Full Text] [Related]
55. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Khangulov SV; Sossong TM; Ash DE; Dismukes GC Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506 [TBL] [Abstract][Full Text] [Related]
56. Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Legrain C; Stalon V Eur J Biochem; 1976 Mar; 63(1):289-301. PubMed ID: 4319 [TBL] [Abstract][Full Text] [Related]
57. Reconstruction of an enzyme by domain substitution effectively switches substrate specificity. Houghton JE; O'Donovan GA; Wild JR Nature; 1989 Mar; 338(6211):172-4. PubMed ID: 2918938 [TBL] [Abstract][Full Text] [Related]
58. Carbamoyl phosphate compartmentation in Neurospora: histochemical localization of aspartate and ornithine transcarbamoylases. Bernhardt SA; Davis RH Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1868-72. PubMed ID: 4114857 [TBL] [Abstract][Full Text] [Related]
59. The catalytic site of Escherichia coli aspartate transcarbamylase: interaction between histidine 134 and the carbonyl group of the substrate carbamyl phosphate. Xi XG; Van Vliet F; Ladjimi MM; Cunin R; Hervé G Biochemistry; 1990 Sep; 29(36):8491-8. PubMed ID: 2252907 [TBL] [Abstract][Full Text] [Related]
60. Decarbamoylating activity of ornithine transcarbamoylase. Costell M; Grisolía S Biochem Biophys Res Commun; 1985 Apr; 128(1):441-8. PubMed ID: 3985980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]