These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 8395516)
1. Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials. Hunt J; Massey V; Dunham WR; Sands RH J Biol Chem; 1993 Sep; 268(25):18685-91. PubMed ID: 8395516 [TBL] [Abstract][Full Text] [Related]
2. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. Harris CM; Sanders SA; Massey V J Biol Chem; 1999 Feb; 274(8):4561-9. PubMed ID: 9988690 [TBL] [Abstract][Full Text] [Related]
3. Purification and properties of milk xanthine dehydrogenase. Hunt J; Massey V J Biol Chem; 1992 Oct; 267(30):21479-85. PubMed ID: 1328233 [TBL] [Abstract][Full Text] [Related]
4. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase. Aguey-Zinsou KF; Bernhardt PV; Leimkühler S J Am Chem Soc; 2003 Dec; 125(50):15352-8. PubMed ID: 14664579 [TBL] [Abstract][Full Text] [Related]
5. Properties of the prosthetic groups of rabbit liver aldehyde oxidase: a comparison of molybdenum hydroxylase enzymes. Barber MJ; Coughlan MP; Rajagopalan KV; Siegel LM Biochemistry; 1982 Jul; 21(15):3561-8. PubMed ID: 6288079 [TBL] [Abstract][Full Text] [Related]
6. Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. Boll M; Fuchs G; Meier C; Trautwein A; El Kasmi A; Ragsdale SW; Buchanan G; Lowe DJ J Biol Chem; 2001 Dec; 276(51):47853-62. PubMed ID: 11602591 [TBL] [Abstract][Full Text] [Related]
7. Kinetic isotope effects and electron transfer in the reduction of xanthine oxidoreductase with 4-hydroxypyrimidine. A comparison between oxidase and dehydrogenase forms. Harris CM; Massey V J Biol Chem; 1997 Sep; 272(36):22514-25. PubMed ID: 9278404 [TBL] [Abstract][Full Text] [Related]
8. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Burns KD; Pieper PA; Liu HW; Stankovich MT Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy. Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083 [TBL] [Abstract][Full Text] [Related]
10. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase. Nishino T; Okamoto K J Inorg Biochem; 2000 Nov; 82(1-4):43-9. PubMed ID: 11132637 [TBL] [Abstract][Full Text] [Related]
12. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase. Barber MJ; Bray RC; Lowe DJ; Coughlan MP Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Shaw JP; Harayama S Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782 [TBL] [Abstract][Full Text] [Related]
14. Oxidation--reduction potentials of turkey liver xanthine dehydrogenase and the origins of oxidase and dehydrogenase behaviour in molybdenum-containing hydroxylases. Barber MJ; Bray RC; Cammack R; Coughlan MP Biochem J; 1977 May; 163(2):279-89. PubMed ID: 869927 [TBL] [Abstract][Full Text] [Related]
15. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Blazyk JL; Lippard SJ Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of multiple forms of rat liver xanthine oxidoreductase expressed in baculovirus-insect cell system. Nishino T; Amaya Y; Kawamoto S; Kashima Y; Okamoto K; Nishino T J Biochem; 2002 Oct; 132(4):597-606. PubMed ID: 12359075 [TBL] [Abstract][Full Text] [Related]
17. Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Kuwabara Y; Nishino T; Okamoto K; Matsumura T; Eger BT; Pai EF; Nishino T Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8170-5. PubMed ID: 12817083 [TBL] [Abstract][Full Text] [Related]
18. Oxidation-reduction properties of Escherichia coli thioredoxin reductase altered at each active site cysteine residue. Prongay AJ; Williams CH J Biol Chem; 1992 Dec; 267(35):25181-8. PubMed ID: 1460018 [TBL] [Abstract][Full Text] [Related]
19. Studies of the reductive half-reaction of milk xanthine dehydrogenase. Hunt J; Massey V J Biol Chem; 1994 Jul; 269(29):18904-14. PubMed ID: 8034647 [TBL] [Abstract][Full Text] [Related]
20. The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical. Harris CM; Massey V J Biol Chem; 1997 Mar; 272(13):8370-9. PubMed ID: 9079661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]