BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 8395585)

  • 1. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex.
    Kawaguchi Y; Kubota Y
    J Neurophysiol; 1993 Jul; 70(1):387-96. PubMed ID: 8395585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex.
    Kawaguchi Y
    J Neurophysiol; 1993 Feb; 69(2):416-31. PubMed ID: 8459275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex.
    Kawaguchi Y
    J Neurosci; 1995 Apr; 15(4):2638-55. PubMed ID: 7722619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum.
    Kawaguchi Y
    J Neurosci; 1993 Nov; 13(11):4908-23. PubMed ID: 7693897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex.
    Kawaguchi Y; Kubota Y
    Neuroscience; 1998 Aug; 85(3):677-701. PubMed ID: 9639265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregated Excitatory-Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex.
    Morishima M; Kobayashi K; Kato S; Kobayashi K; Kawaguchi Y
    Cereb Cortex; 2017 Dec; 27(12):5846-5857. PubMed ID: 29045559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro.
    Foehring RC; Lorenzon NM; Herron P; Wilson CJ
    J Neurophysiol; 1991 Dec; 66(6):1825-37. PubMed ID: 1812219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-localization of two calcium binding proteins in GABA cells of rat piriform cortex.
    Kubota Y; Jones EG
    Brain Res; 1993 Jan; 600(2):339-44. PubMed ID: 8435756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic cell subtypes and their synaptic connections in rat frontal cortex.
    Kawaguchi Y; Kubota Y
    Cereb Cortex; 1997 Sep; 7(6):476-86. PubMed ID: 9276173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics.
    Gabbott PL; Bacon SJ
    J Comp Neurol; 1996 Jan; 364(4):567-608. PubMed ID: 8821449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex.
    Kawaguchi Y; Kubota Y
    J Neurosci; 1996 Apr; 16(8):2701-15. PubMed ID: 8786446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat.
    Alcántara S; Ferrer I; Soriano E
    Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of excitatory hierarchical circuits by parvalbumin-FS basket cells in layer 5 of the frontal cortex: insights for cortical oscillations.
    Kawaguchi Y; Otsuka T; Morishima M; Ushimaru M; Kubota Y
    J Neurophysiol; 2019 Jun; 121(6):2222-2236. PubMed ID: 30995139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis.
    Gu F; Parada I; Shen F; Li J; Bacci A; Graber K; Taghavi RM; Scalise K; Schwartzkroin P; Wenzel J; Prince DA
    Neurobiol Dis; 2017 Dec; 108():100-114. PubMed ID: 28823934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):39-55. PubMed ID: 8783228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex.
    Kawaguchi Y; Kondo S
    J Neurocytol; 2002; 31(3-5):277-87. PubMed ID: 12815247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat.
    van Brederode JF; Helliesen MK; Hendrickson AE
    Neuroscience; 1991; 44(1):157-71. PubMed ID: 1770994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine anterior cingulate cortex: transient expression in layer V pyramidal cells.
    Moon JS; Kim JJ; Chang IY; Chung YY; Jun JY; You HJ; Yoon SP
    Int J Dev Neurosci; 2002 Oct; 20(6):511. PubMed ID: 12392755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex.
    McMullen NT; Smelser CB; de Venecia RK
    J Comp Neurol; 1994 Nov; 349(4):493-511. PubMed ID: 7860786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
    Williams SM; Goldman-Rakic PS; Leranth C
    J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.