BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8395832)

  • 1. Muscle-specific transcriptional activation by CArG box requires either homophilic or heterophilic interactions of the CArG box binding factors.
    Soulez M; Tuil D; Kahn A; Phan-Dinh-Tuy F
    Biochem Biophys Res Commun; 1993 Aug; 195(1):400-8. PubMed ID: 8395832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CC Ar GG boxes, cis-acting elements with a dual specificity. Muscle-specific transcriptional activation and serum responsiveness.
    Tuil D; Clergue N; Montarras D; Pinset C; Kahn A; Phan-Dinh-Tuy F
    J Mol Biol; 1990 Jun; 213(4):677-86. PubMed ID: 2162966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein binding to CArG box motifs and to single-stranded DNA functions as a transcriptional repressor.
    Kamada S; Miwa T
    Gene; 1992 Oct; 119(2):229-36. PubMed ID: 1398104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The serum response factor (SRF) is needed for muscle-specific activation of CArG boxes.
    Soulez M; Tuil D; Kahn A; Gilgenkrantz H
    Biochem Biophys Res Commun; 1996 Feb; 219(2):418-22. PubMed ID: 8605002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene.
    Catala F; Wanner R; Barton P; Cohen A; Wright W; Buckingham M
    Mol Cell Biol; 1995 Aug; 15(8):4585-96. PubMed ID: 7623850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation.
    Datta R; Taneja N; Sukhatme VP; Qureshi SA; Weichselbaum R; Kufe DW
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2419-22. PubMed ID: 8384722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the sequence requirements for the expression of a Xenopus borealis embryonic/larval skeletal actin gene.
    Lakin ND; Boardman M; Woodland HR
    Eur J Biochem; 1993 Jun; 214(2):425-35. PubMed ID: 8513792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of gene expression via CArG boxes during myogenic differentiation.
    Tuil D; Soulez M; Montarras D; Pinset C; Kahn A; Phan-Dinh-Tuy F
    Exp Cell Res; 1993 Mar; 205(1):32-8. PubMed ID: 8453994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the CArG box in regulation of beta-actin-encoding genes.
    Liu ZJ; Moav B; Faras AJ; Guise KS; Kapuscinski AR; Hackett P
    Gene; 1991 Dec; 108(2):211-7. PubMed ID: 1748307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene.
    Miwa T; Kedes L
    Mol Cell Biol; 1987 Aug; 7(8):2803-13. PubMed ID: 2823106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CArG boxes in the human cardiac alpha-actin gene are core binding sites for positive trans-acting regulatory factors.
    Miwa T; Boxer LM; Kedes L
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6702-6. PubMed ID: 3477800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties.
    Santoro IM; Walsh K
    Mol Cell Biol; 1991 Dec; 11(12):6296-305. PubMed ID: 1658630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions.
    Mack CP; Owens GK
    Circ Res; 1999 Apr; 84(7):852-61. PubMed ID: 10205154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter.
    Galvagni F; Lestingi M; Cartocci E; Oliviero S
    Mol Cell Biol; 1997 Mar; 17(3):1731-43. PubMed ID: 9032300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common factor regulates skeletal and cardiac alpha-actin gene transcription in muscle.
    Muscat GE; Gustafson TA; Kedes L
    Mol Cell Biol; 1988 Oct; 8(10):4120-33. PubMed ID: 3185543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle specificity encoded by specific serum response factor-binding sites.
    Chang PS; Li L; McAnally J; Olson EN
    J Biol Chem; 2001 May; 276(20):17206-12. PubMed ID: 11278806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos.
    Mohun TJ; Taylor MV; Garrett N; Gurdon JB
    EMBO J; 1989 Apr; 8(4):1153-61. PubMed ID: 2743976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1.
    Ellis PD; Martin KM; Rickman C; Metcalfe JC; Kemp PR
    Biochem J; 2002 Jun; 364(Pt 2):547-54. PubMed ID: 12023898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements.
    Martin KA; Gualberto A; Kolman MF; Lowry J; Walsh K
    DNA Cell Biol; 1997 May; 16(5):653-61. PubMed ID: 9174170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter.
    Gustafson TA; Kedes L
    Mol Cell Biol; 1989 Aug; 9(8):3269-83. PubMed ID: 2796988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.