These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8395879)
21. Experimental charge measurement at leaving oxygen in the bovine ribonuclease A catalyzed cyclization of uridine 3'-phosphate aryl esters. Davis AM; Regan AC; Williams A Biochemistry; 1988 Dec; 27(25):9042-7. PubMed ID: 2852962 [TBL] [Abstract][Full Text] [Related]
22. X-ray, NMR, and mutational studies of the catalytic cycle of the GDP-mannose mannosyl hydrolase reaction. Gabelli SB; Azurmendi HF; Bianchet MA; Amzel LM; Mildvan AS Biochemistry; 2006 Sep; 45(38):11290-303. PubMed ID: 16981689 [TBL] [Abstract][Full Text] [Related]
23. Catalysis of the hydrolysis of phosphorylated pyridines by Mg(OH)+: a possible model for enzymatic phosphoryl transfer. Herschlag D; Jencks WP Biochemistry; 1990 May; 29(21):5172-9. PubMed ID: 2378873 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic study of protein phosphatase-1 (PP1), a catalytically promiscuous enzyme. McWhirter C; Lund EA; Tanifum EA; Feng G; Sheikh QI; Hengge AC; Williams NH J Am Chem Soc; 2008 Oct; 130(41):13673-82. PubMed ID: 18798625 [TBL] [Abstract][Full Text] [Related]
25. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase catalyzed DNPP hydrolysis. Champion D; Blond G; Le Meste M; Simatos D J Agric Food Chem; 2000 Oct; 48(10):4942-7. PubMed ID: 11052760 [TBL] [Abstract][Full Text] [Related]
26. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Wu L; Zhang ZY Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532 [TBL] [Abstract][Full Text] [Related]
28. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670 [TBL] [Abstract][Full Text] [Related]
29. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261 [TBL] [Abstract][Full Text] [Related]
30. Effect of citrulline for arginine replacement on the structure and turnover of phosphopeptide substrates of protein phosphatase-1. Martin BL; Luo S; Kintanar A; Chen M; Graves DJ Arch Biochem Biophys; 1998 Nov; 359(2):179-91. PubMed ID: 9808759 [TBL] [Abstract][Full Text] [Related]
31. Transition state and rate-limiting step of the reaction catalyzed by the human dual-specificity phosphatase, VHR. Zhang ZY; Wu L; Chen L Biochemistry; 1995 Dec; 34(49):16088-96. PubMed ID: 8519766 [TBL] [Abstract][Full Text] [Related]
32. Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase. Jackson DA; Mabury SA Environ Toxicol Chem; 2012 Sep; 31(9):1966-71. PubMed ID: 22714665 [TBL] [Abstract][Full Text] [Related]
33. Interaction of carboxypeptidase A with carbamate and carbonate esters. King SW; Lum VR; Fife TH Biochemistry; 1987 Apr; 26(8):2294-300. PubMed ID: 3620447 [TBL] [Abstract][Full Text] [Related]
34. Generality of solvation effects on the hydrolysis rates of phosphate monoesters and their possible relevance to enzymatic catalysis. Grzyska PK; Czyryca PG; Golightly J; Small K; Larsen P; Hoff RH; Hengge AC J Org Chem; 2002 Feb; 67(4):1214-20. PubMed ID: 11846665 [TBL] [Abstract][Full Text] [Related]
35. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
36. Kinetics of the alkaline phosphatase catalyzed hydrolysis of disodium p-nitrophenyl phosphate: effects of carbohydrate additives, low temperature, and freezing. Terefe NS; Arimi JM; Van Loey A; Hendrickx M Biotechnol Prog; 2004; 20(5):1467-78. PubMed ID: 15458332 [TBL] [Abstract][Full Text] [Related]
37. Characterization of alkaline phosphatase PhoK from Sphingomonas sp. BSAR-1 for phosphate monoester synthesis and hydrolysis. Lukesch M; Tasnádi G; Ditrich K; Hall M; Faber K Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140291. PubMed ID: 31678193 [TBL] [Abstract][Full Text] [Related]
38. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis. Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803 [TBL] [Abstract][Full Text] [Related]
39. Implications for an ionized alkyl-enzyme intermediate during StEH1-catalyzed trans-stilbene oxide hydrolysis. Elfström LT; Widersten M Biochemistry; 2006 Jan; 45(1):205-12. PubMed ID: 16388596 [TBL] [Abstract][Full Text] [Related]
40. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site. Tibbitts TT; Xu X; Kantrowitz ER Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]