These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8395879)
41. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate. McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522 [TBL] [Abstract][Full Text] [Related]
42. Reactive-site design in folded-polypeptide catalysts--the leaving group pKa of reactive esters sets the stage for cooperativity in nucleophilic and general-acid catalysis. Nilsson J; Baltzer L Chemistry; 2000 Jun; 6(12):2214-20. PubMed ID: 10926228 [TBL] [Abstract][Full Text] [Related]
43. Substituent effects in the carboxypeptidase A catalyzed hydrolysis of substituted L,beta-phenyllactate esters. Osumi A; Rahmo A; King SW; Przystas TJ; Fife TH Biochemistry; 1994 Dec; 33(49):14750-7. PubMed ID: 7993903 [TBL] [Abstract][Full Text] [Related]
44. Dependence of the P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Quantification of selectivity in the catalysed hydrolysis of the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides. Kowlessur D; Thomas EW; Topham CM; Templeton W; Brocklehurst K Biochem J; 1990 Mar; 266(3):653-60. PubMed ID: 2327954 [TBL] [Abstract][Full Text] [Related]
45. Vaccinia DNA topoisomerase I: kinetic evidence for general acid-base catalysis and a conformational step. Stivers JT; Shuman S; Mildvan AS Biochemistry; 1994 Dec; 33(51):15449-58. PubMed ID: 7803409 [TBL] [Abstract][Full Text] [Related]
46. Use of site-directed mutagenesis to elucidate the role of arginine-166 in the catalytic mechanism of alkaline phosphatase. Butler-Ransohoff JE; Kendall DA; Kaiser ET Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4276-8. PubMed ID: 3288990 [TBL] [Abstract][Full Text] [Related]
47. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Brocklehurst K; Kowlessur D; Patel G; Templeton W; Quigley K; Thomas EW; Wharton CW; Willenbrock F; Szawelski RJ Biochem J; 1988 Mar; 250(3):761-72. PubMed ID: 2839145 [TBL] [Abstract][Full Text] [Related]
48. Role of protein conformational mobility in enzyme catalysis: acylation of alpha-chymotrypsin by specific peptide substrates. Hengge AC; Stein RL Biochemistry; 2004 Jan; 43(3):742-7. PubMed ID: 14730979 [TBL] [Abstract][Full Text] [Related]
49. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108 [TBL] [Abstract][Full Text] [Related]
50. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. Campbell FE; Cassano AG; Anderson VE; Harris ME J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377 [TBL] [Abstract][Full Text] [Related]
51. Catalysis of phosphoryl group transfer. The role of divalent metal ions in the hydrolysis of lactic acid O-phenyl phosphate and salicylic acid O-aryl phosphates. Steffens JJ; Siewers IJ; Benkovic SJ Biochemistry; 1975 Jun; 14(11):2341-40. PubMed ID: 237530 [TBL] [Abstract][Full Text] [Related]
52. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide. Razkin J; Nilsson H; Baltzer L J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898 [TBL] [Abstract][Full Text] [Related]
53. Catalytic mechanism of Escherichia coli alkaline phosphatase: resolution of three variants of the acyl-enzyme mechanism. Bloch W; Gorby MS Biochemistry; 1980 Oct; 19(22):5008-18. PubMed ID: 7006682 [TBL] [Abstract][Full Text] [Related]
54. Human placental alkaline phosphatase-mediated hydrolysis correlates tightly with the electrostatic contribution from tail group. Yang Y; Wang K; Li W; Adelstein SJ; Kassis AI Chem Biol Drug Des; 2011 Dec; 78(6):923-31. PubMed ID: 21910833 [TBL] [Abstract][Full Text] [Related]
55. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis. Hengge AC; Denu JM; Dixon JE Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534 [TBL] [Abstract][Full Text] [Related]
56. Leaving group assistance in the La3+-catalyzed cleavage of dimethyl (o-methoxycarbonyl)aryl phosphate triesters in methanol. Edwards DR; Liu CT; Garrett GE; Neverov AA; Brown RS J Am Chem Soc; 2009 Sep; 131(38):13738-48. PubMed ID: 19736937 [TBL] [Abstract][Full Text] [Related]
57. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis. Zalatan JG; Herschlag D J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548 [TBL] [Abstract][Full Text] [Related]
58. Kinetics and mechanism of the hydrolytic degradation of indinavir: intramolecular catalysis. Toteva MM; Zanon R; Ostovic D J Pharm Sci; 2008 Sep; 97(9):3810-9. PubMed ID: 18186489 [TBL] [Abstract][Full Text] [Related]
59. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
60. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]