These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8396089)

  • 1. Comparison of azithromycin, roxithromycin, and cephalexin penetration kinetics in early and mature abscesses.
    Girard D; Bergeron JM; Milisen WB; Retsema JA
    J Antimicrob Chemother; 1993 Jun; 31 Suppl E():17-28. PubMed ID: 8396089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential concentration of azithromycin in an infected mouse thigh model.
    Retsema JA; Bergeron JM; Girard D; Milisen WB; Girard AE
    J Antimicrob Chemother; 1993 Jun; 31 Suppl E():5-16. PubMed ID: 8396096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-blind, double-dummy comparison of azithromycin and cephalexin in the treatment of skin and skin structure infections.
    Kiani R
    Eur J Clin Microbiol Infect Dis; 1991 Oct; 10(10):880-4. PubMed ID: 1662638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azithromycin compared with cephalexin in the treatment of skin and skin structure infections.
    Mallory SB
    Am J Med; 1991 Sep; 91(3A):36S-39S. PubMed ID: 1656741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function against Staphylococcus aureus.
    Pascual A; López-López G; Aragón J; Perea EJ
    Chemotherapy; 1990; 36(6):422-7. PubMed ID: 1963394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Tissue penetration properties of macrolide antibiotics--comparative tissue distribution of erythromycin-stearate, clarithromycin, roxithromycin and azithromycin in rats].
    Yoshida H; Furuta T
    Jpn J Antibiot; 1999 Jul; 52(7):497-503. PubMed ID: 10516929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of high tissue concentrations of azithromycin to bactericidal activity and efficacy in vivo.
    Retsema JA; Girard AE; Girard D; Milisen WB
    J Antimicrob Chemother; 1990 Jan; 25 Suppl A():83-9. PubMed ID: 2154442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraphagocytic activity of erythromycin, roxithromycin and azithromycin.
    Milatovic D
    Eur J Clin Microbiol Infect Dis; 1990 Jan; 9(1):33-5. PubMed ID: 2154381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Once-daily azithromycin in the treatment of adult skin and skin-structure infections.
    Amaya-Tapia G; Aguirre-Avalos G; Andrade-Villanueva J; Peredo-González G; Morfín-Otero R; Esparza-Ahumada S; Rodríguez-Noriega E
    J Antimicrob Chemother; 1993 Jun; 31 Suppl E():129-35. PubMed ID: 8396084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Randomized, double-blind, placebo-controlled trial of cephalexin for treatment of uncomplicated skin abscesses in a population at risk for community-acquired methicillin-resistant Staphylococcus aureus infection.
    Rajendran PM; Young D; Maurer T; Chambers H; Perdreau-Remington F; Ro P; Harris H
    Antimicrob Agents Chemother; 2007 Nov; 51(11):4044-8. PubMed ID: 17846141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azithromycin in an experimental Staphylococcus aureus abscess model.
    Bamberger DM; Herndon BL; Suvarna PR
    J Antimicrob Chemother; 1995 May; 35(5):623-9. PubMed ID: 7592175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transplacental transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin.
    Heikkinen T; Laine K; Neuvonen PJ; Ekblad U
    BJOG; 2000 Jun; 107(6):770-5. PubMed ID: 10847234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin.
    Bahal N; Nahata MC
    Ann Pharmacother; 1992 Jan; 26(1):46-55. PubMed ID: 1318761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The particular case of azalides: antibiotic diapedesis. Experimental data from a murine model of pneumococcal pneumonia].
    Veber B; Pocidalo JJ
    Pathol Biol (Paris); 1995 Jun; 43(6):524-8. PubMed ID: 8539075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cytostatic treatment on the efficacy of erythromycin and roxithromycin in a staphylococcal infection in mice.
    Calame W; Guiot HF; Mattie H
    Scand J Infect Dis; 1990; 22(6):717-23. PubMed ID: 2149467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of the extravascular pharmacokinetics of azithromycin with in-vivo efficacy in models of localized infection.
    Girard AE; Girard D; Retsema JA
    J Antimicrob Chemother; 1990 Jan; 25 Suppl A():61-71. PubMed ID: 2154439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin.
    Scaglione F; Rossoni G
    J Antimicrob Chemother; 1998 Mar; 41 Suppl B():47-50. PubMed ID: 9579712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anti-inflammatory effects of erythromycin, clarithromycin, azithromycin and roxithromycin on histamine-induced otitis media with effusion in guinea pigs.
    Ersoy B; Aktan B; Kilic K; Sakat MS; Sipal S
    J Laryngol Otol; 2018 Jul; 132(7):579-583. PubMed ID: 29888693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pharmacokinetics and inflammatory fluid penetration of orally administered azithromycin.
    Cooper MA; Nye K; Andrews JM; Wise R
    J Antimicrob Chemother; 1990 Oct; 26(4):533-8. PubMed ID: 2174853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phagocyte uptake and transport of azithromycin.
    McDonald PJ; Pruul H
    Eur J Clin Microbiol Infect Dis; 1991 Oct; 10(10):828-33. PubMed ID: 1662626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.