BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8396108)

  • 1. High lactate and NH3 release during arm vs. leg exercise is not due to beta-adrenoceptor stimulation.
    Jensen-Urstad M; Ahlborg G; Sahlin K
    J Appl Physiol (1985); 1993 Jun; 74(6):2860-7. PubMed ID: 8396108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the high lactate release during arm exercise due to a low training status?
    Jensen-Urstad M; Ahlborg G
    Clin Physiol; 1992 Jul; 12(4):487-96. PubMed ID: 1505170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High anaerobic energy release during submaximal arm exercise.
    Jensen-Urstad M; Hallbäck I; Sahlin K
    Clin Physiol; 1993 Jan; 13(1):81-7. PubMed ID: 8435979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypoxia on muscle oxygenation and metabolism during arm exercise in humans.
    Jensen-Urstad M; Hallbäck I; Sahlin K
    Clin Physiol; 1995 Jan; 15(1):27-37. PubMed ID: 7712690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of prior arm exercise on pulmonary gas exchange kinetics during high-intensity leg exercise in humans.
    Bohnert B; Ward SA; Whipp BJ
    Exp Physiol; 1998 Jul; 83(4):557-70. PubMed ID: 9717077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.
    Poole DC; Schaffartzik W; Knight DR; Derion T; Kennedy B; Guy HJ; Prediletto R; Wagner PD
    J Appl Physiol (1985); 1991 Oct; 71(4):1245-60. PubMed ID: 1757346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of acute vs chronic treatment with beta-adrenoceptor blockade on exercise performance, haemodynamic and metabolic parameters in healthy men and women.
    Gullestad L; Hallen J; Medbø JI; Grønnerød O; Holme I; Sejersted OM
    Br J Clin Pharmacol; 1996 Jan; 41(1):57-67. PubMed ID: 8824694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary-adrenal responses to arm versus leg exercise in untrained man.
    Maresh CM; Sökmen B; Kraemer WJ; Hoffman JR; Watson G; Judelson DA; Gabaree-Boulant CL; Deschenes MR; Vanheest JL; Armstrong LE
    Eur J Appl Physiol; 2006 Jul; 97(4):471-7. PubMed ID: 16685546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of beta-receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men.
    Ahlborg G; Juhlin-Dannfelt A
    J Appl Physiol (1985); 1994 Mar; 76(3):1037-42. PubMed ID: 7911796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of hemodynamic, humoral and metabolic responses to beta 1- and beta 2-adrenergic stimulation in man using atenolol and propranolol.
    McLeod AA; Brown JE; Kuhn C; Kitchell BB; Sedor FA; Williams RS; Shand DG
    Circulation; 1983 May; 67(5):1076-84. PubMed ID: 6299612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of muscle mass on lactate formation during exercise in humans.
    Jensen-Urstad M; Svedenhag J; Sahlin K
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):189-95. PubMed ID: 8001528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude.
    Brooks GA; Wolfel EE; Butterfield GE; Cymerman A; Roberts AC; Mazzeo RS; Reeves JT
    Am J Physiol; 1998 Oct; 275(4):R1192-201. PubMed ID: 9756550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism in exercising arm vs. leg muscle.
    Ahlborg G; Jensen-Urstad M
    Clin Physiol; 1991 Sep; 11(5):459-68. PubMed ID: 1934942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for glycogenolysis in nonexercising human muscle during and after exercise.
    Ahlborg G
    Am J Physiol; 1985 May; 248(5 Pt 1):E540-5. PubMed ID: 3993774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of beta-adrenergic blockade on plasma lactate concentration during exercise at high altitude.
    Young AJ; Young PM; McCullough RE; Moore LG; Cymerman A; Reeves JT
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):315-22. PubMed ID: 1685447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta 1-selective and non-selective beta-adrenoceptor blockade, anaerobic threshold and respiratory gas exchange during exercise.
    McLeod AA; Knopes KD; Shand DG; Williams RS
    Br J Clin Pharmacol; 1985 Jan; 19(1):13-20. PubMed ID: 2858214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m.
    Wolfel EE; Selland MA; Cymerman A; Brooks GA; Butterfield GE; Mazzeo RS; Grover RF; Reeves JT
    J Appl Physiol (1985); 1998 Sep; 85(3):1092-102. PubMed ID: 9729588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular responses during one- and two-legged exercise in middle-aged men.
    Magnusson G; Kaijser L; Isberg B; Saltin B
    Acta Physiol Scand; 1994 Apr; 150(4):353-62. PubMed ID: 8036904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m.
    Brooks GA; Wolfel EE; Groves BM; Bender PR; Butterfield GE; Cymerman A; Mazzeo RS; Sutton JR; Wolfe RR; Reeves JT
    J Appl Physiol (1985); 1992 Jun; 72(6):2435-45. PubMed ID: 1629100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.