BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8396431)

  • 81. Saturation transfer EPR measurements of the rotational motion of a strongly immobilized ouabain spin label on renal Na,K-ATPase.
    Mahaney JE; Girard JP; Grisham CM
    FEBS Lett; 1990 Jan; 260(2):160-4. PubMed ID: 2153581
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of the biochemical state of the Ca-ATPase protein of scallop sarcoplasmic reticulum on its interaction with trans-parinaric acid.
    Kalabokis VN; Hardwicke PM
    Biochim Biophys Acta; 1993 Apr; 1147(1):35-41. PubMed ID: 8466929
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Role of interprotein interactions in the regulation of the sarcoplasmic reticulum Ca-pump].
    Boldyrev AA
    Ukr Biokhim Zh (1978); 1983; 55(6):677-89. PubMed ID: 6318416
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Rotational dynamics of actin-bound intermediates in the myosin ATPase cycle.
    Berger CL; Thomas DD
    Biochemistry; 1991 Nov; 30(46):11036-45. PubMed ID: 1657157
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Effects of phospholipid layer on the dynamic microstructure of phosphorylation domain of Ca(2+)-ATPase from sarcoplasmic reticulum prepared from rabbit skeletal muscle].
    Zhu MY
    Hokkaido Igaku Zasshi; 1992 May; 67(3):398-407. PubMed ID: 1387385
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data.
    Hustedt EJ; Cobb CE; Beth AH; Beechem JM
    Biophys J; 1993 Mar; 64(3):614-21. PubMed ID: 7682452
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Role of lipid peroxidation in changes in the structure of Ca-ATPase in skeletal muscle sarcoplasmic reticulum during hypercholesterolemia].
    Timofeev AA; Azizova OA; Chernysheva GV
    Biull Eksp Biol Med; 1985 Mar; 99(3):301-3. PubMed ID: 3157412
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum.
    Bigelow DJ; Inesi G
    Biochemistry; 1991 Feb; 30(8):2113-25. PubMed ID: 1825607
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP.
    Ostap EM; Thomas DD
    Biophys J; 1991 Jun; 59(6):1235-41. PubMed ID: 1651780
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Application of ESR saturation transfer spectroscopy for the study of molecular mobility of membrane proteins].
    Livshits VA
    Mol Biol (Mosk); 1983; 17(4):714-25. PubMed ID: 6312286
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Influence of monovalent cations on the Ca2+-ATPase of sarcoplasmic reticulum isolated from rabbit skeletal and dog cardiac muscles. An interpretation of transient-state kinetic data.
    Wang T; Grassi de Gende AO; Tsai LI; Schwartz A
    Biochim Biophys Acta; 1981 Oct; 637(3):523-9. PubMed ID: 6456766
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Phosphatidylethanolamine modulates Ca-ATPase function and dynamics.
    Hunter GW; Negash S; Squier TC
    Biochemistry; 1999 Jan; 38(4):1356-64. PubMed ID: 9930998
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Properties of detergent-solubilized and membranous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum as studied by sulfhydryl reactivity and ESR spectroscopy. Effect of protein-protein interactions.
    Andersen JP; le Maire M; Møller JV
    Biochim Biophys Acta; 1980 Dec; 603(1):84-100. PubMed ID: 6108784
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Inactivation of calcium uptake by EGTA is due to an irreversible thermotropic conformational change in the calcium binding domain of the Ca(2+)-ATPase.
    Cheng KH; Lepock JR
    Biochemistry; 1992 Apr; 31(16):4074-80. PubMed ID: 1533156
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Intramolecular oscillation of the phosphorylation domain of rat cardiac sarcoplasmic reticulum titrated with arachidonoyl phosphatidylcholine.
    Koyama T; Zhu MY
    Jpn Heart J; 1992 Jul; 33(4):477-85. PubMed ID: 1453552
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A passage saturation transfer paramagnetic resonance study of the rotational diffusion of the sarcoplasmic reticulum calcium-ATPase.
    King MD; Quinn PJ
    J Bioenerg Biomembr; 1983 Jun; 15(3):135-50. PubMed ID: 18251102
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Characterization of skeletal muscle actin labeled with the triplet probe erythrosin-5-iodoacetamide.
    Ludescher RD; Liu Z
    Photochem Photobiol; 1993 Dec; 58(6):858-66. PubMed ID: 8310009
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rotational dynamics of chloroplast ATP synthase in phospholipid vesicles.
    Musier-Forsyth KM; Hammes GG
    Biochemistry; 1990 Apr; 29(13):3236-41. PubMed ID: 2159333
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Time-resolved phosphorescence anisotropy as a tool to study the conformation and oligomeric structure of ion-transport ATPases.
    Quinn PJ; Yang L; McStay D; Lopina OD; Rubtsov AM; Boldyrev AA
    Biochem Soc Trans; 1994 Aug; 22(3):383S. PubMed ID: 7821634
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.