These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8396472)

  • 1. Accessory subunits and sodium channel inactivation.
    Goldin AL
    Curr Opin Neurobiol; 1993 Jun; 3(3):272-7. PubMed ID: 8396472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peptide segment critical for sodium channel inactivation functions as an inactivation gate in a potassium channel.
    Patton DE; West JW; Catterall WA; Goldin AL
    Neuron; 1993 Nov; 11(5):967-74. PubMed ID: 8240817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of III-IV linker mutations on human heart Na+ channel inactivation gating.
    Hartmann HA; Tiedeman AA; Chen SF; Brown AM; Kirsch GE
    Circ Res; 1994 Jul; 75(1):114-22. PubMed ID: 8013069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium channel inactivation is altered by substitution of voltage sensor positive charges.
    Kontis KJ; Goldin AL
    J Gen Physiol; 1997 Oct; 110(4):403-13. PubMed ID: 9379172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in sodium channel gating produced by point mutations in a cytoplasmic linker.
    Moorman JR; Kirsch GE; Brown AM; Joho RH
    Science; 1990 Nov; 250(4981):688-91. PubMed ID: 2173138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker.
    Patton DE; West JW; Catterall WA; Goldin AL
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10905-9. PubMed ID: 1332059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-sensitive sodium channels: agents that perturb inactivation gating.
    Agnew WS; Cooper EC; Shenkel S; Correa AM; James WM; Ukomadu C; Tomiko SA
    Ann N Y Acad Sci; 1991; 625():200-23. PubMed ID: 1647724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sodium channel mutation causing epilepsy in man exhibits subtle defects in fast inactivation and activation in vitro.
    Alekov A; Rahman MM; Mitrovic N; Lehmann-Horn F; Lerche H
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):533-9. PubMed ID: 11118488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits.
    Mantegazza M; Yu FH; Powell AJ; Clare JJ; Catterall WA; Scheuer T
    J Neurosci; 2005 Mar; 25(13):3341-9. PubMed ID: 15800189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction.
    Spampanato J; Kearney JA; de Haan G; McEwen DP; Escayg A; Aradi I; MacDonald BT; Levin SI; Soltesz I; Benna P; Montalenti E; Isom LL; Goldin AL; Meisler MH
    J Neurosci; 2004 Nov; 24(44):10022-34. PubMed ID: 15525788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.
    Sheets MF; Hanck DA
    J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative effect of S4-S5 loops in domains D3 and D4 on fast inactivation of the Na+ channel.
    Popa MO; Alekov AK; Bail S; Lehmann-Horn F; Lerche H
    J Physiol; 2004 Nov; 561(Pt 1):39-51. PubMed ID: 15459238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide.
    Eaholtz G; Scheuer T; Catterall WA
    Neuron; 1994 May; 12(5):1041-8. PubMed ID: 8185942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium.
    Stocker PJ; Bennett ES
    J Gen Physiol; 2006 Mar; 127(3):253-65. PubMed ID: 16476705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recent advances in the molecular biology of voltage-sensitive Na+ channels].
    Okamura Y
    Nihon Rinsho; 1993 Apr; 51(4):1092-101. PubMed ID: 8387120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels.
    Nuss HB; Balser JR; Orias DW; Lawrence JH; Tomaselli GF; Marban E
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):411-29. PubMed ID: 8842001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of gating and drug block of sodium channels.
    Catterall WA
    Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization.
    Kühn FJ; Greeff NG
    J Gen Physiol; 1999 Aug; 114(2):167-83. PubMed ID: 10435996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.