BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 8396789)

  • 1. [Protein phosphatases that control cell cycle].
    Shimanuki M
    Tanpakushitsu Kakusan Koso; 1993 Aug; 38(10):1621-4. PubMed ID: 8396789
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitotic treasures in the nucleolus.
    Bachant JB; Elledge SJ
    Nature; 1999 Apr; 398(6730):757-8. PubMed ID: 10235256
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell cycle. Checkpoint on the nuclear frontier.
    Pines J
    Nature; 1999 Jan; 397(6715):104-5. PubMed ID: 9923668
    [No Abstract]   [Full Text] [Related]  

  • 4. Targets of the cyclin-dependent kinase Cdk1.
    Ubersax JA; Woodbury EL; Quang PN; Paraz M; Blethrow JD; Shah K; Shokat KM; Morgan DO
    Nature; 2003 Oct; 425(6960):859-64. PubMed ID: 14574415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of a soluble cyclin B/cdc2 substrate for cdc25 phosphatase.
    Clark JM; Gabrielli BG
    Anal Biochem; 1997 Dec; 254(2):231-5. PubMed ID: 9417782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control and activity of type-1 serine/threonine protein phosphatase during the cell cycle.
    Ludlow JW; Nelson DA
    Semin Cancer Biol; 1995 Aug; 6(4):195-202. PubMed ID: 8541514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Functional genomics of protein phosphatase genes in budding yeast].
    Harashima S; Kaneko Y
    Tanpakushitsu Kakusan Koso; 2001 Dec; 46(16 Suppl):2414-8. PubMed ID: 11802403
    [No Abstract]   [Full Text] [Related]  

  • 8. [Cell cycle control by multifunctional protein, calmodulin].
    Sekiya M; Ohya Y
    Tanpakushitsu Kakusan Koso; 1996 Sep; 41(12 Suppl):1688-94. PubMed ID: 8890624
    [No Abstract]   [Full Text] [Related]  

  • 9. Use of CDC2 from etoposide-treated cells as substrate to assay CDC25 phosphatase activity.
    Cans C; Sert V; De Rycke J; Baldin V; Ducommun B
    Anticancer Res; 1999; 19(2A):1241-4. PubMed ID: 10368682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When CDK1 rides the telomere cycle.
    Teixeira MT; Gilson E
    Mol Cell; 2006 Nov; 24(4):491-2. PubMed ID: 17188029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of multicopy suppressors of cell cycle arrest at the G1-S transition in Saccharomyces cerevisiae.
    Muñoz I; Simón E; Casals N; Clotet J; Ariño J
    Yeast; 2003 Jan; 20(2):157-69. PubMed ID: 12518319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair: tails of histones lost.
    Nussenzweig A; Paull T
    Nature; 2006 Jan; 439(7075):406-7. PubMed ID: 16437102
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of cdc2, cdc25 and cyclin A genes in the maintenance of immortalization and growth arrest in a rat embryonic fibroblast conditional cell line.
    Gonos ES; Spandidos DA
    Cell Biol Int; 1996 Mar; 20(3):159-67. PubMed ID: 8673064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of stress-activated protein kinase signaling pathways by protein phosphatases].
    Tamura S; Hanada M; Sasaki M; Komaki K; Yonezawa T; Kobayashi T
    Tanpakushitsu Kakusan Koso; 2002 Apr; 47(5):568-75. PubMed ID: 11974854
    [No Abstract]   [Full Text] [Related]  

  • 15. A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in controlling the rapid degradation of the mitotic inducer Cdc25p in fission yeast.
    Esteban V; Blanco M; Cueille N; Simanis V; Moreno S; Bueno A
    J Cell Sci; 2004 May; 117(Pt 12):2461-8. PubMed ID: 15128870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of insulin-like growth factor-1 signaling and down-regulation of cdc2 by SC-alphaalphadelta9, a novel small molecule antisignaling agent identified in a targeted array library.
    Vogt A; Rice RL; Settineri CE; Yokokawa F; Yokokawa S; Wipf P; Lazo JS
    J Pharmacol Exp Ther; 1998 Nov; 287(2):806-13. PubMed ID: 9808713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Negative regulation of the stress-activated protein kinase pathway by protein phosphatases].
    Shiozaki K
    Tanpakushitsu Kakusan Koso; 1998 Jun; 43(8 Suppl):1055-61. PubMed ID: 9655963
    [No Abstract]   [Full Text] [Related]  

  • 18. The search for the biological function of novel yeast Ser/Thr phosphatases.
    Ariño J; Posas F; Clotet J
    Methods Mol Biol; 1998; 93():305-13. PubMed ID: 9664547
    [No Abstract]   [Full Text] [Related]  

  • 19. Roles and regulation of serine/threonine-specific protein phosphatases in the cell cycle.
    Berndt N
    Prog Cell Cycle Res; 2003; 5():497-510. PubMed ID: 14593745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdk1: a kinase with changing substrate specificity.
    Kõivomägi M; Loog M
    Cell Cycle; 2011 Nov; 10(21):3625-6. PubMed ID: 22033215
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.