BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8396917)

  • 1. Preparation and characterization of basolateral membrane vesicles from pig and human colonocytes: the mechanism of glucose transport.
    Pinches SA; Gribble SM; Beechey RB; Ellis A; Shaw JM; Shirazi-Beechey SP
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):529-34. PubMed ID: 8396917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycyl-L-proline transport in rabbit enterocyte basolateral-membrane vesicles.
    Dyer J; Beechey RB; Gorvel JP; Smith RT; Wootton R; Shirazi-Beechey SP
    Biochem J; 1990 Aug; 269(3):565-71. PubMed ID: 2167659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric reconstitution of the glucose transporter from Ehrlich ascites cell plasma membrane: role of alkali cations.
    McCormick JI; Johnstone RM
    Arch Biochem Biophys; 1986 Jul; 248(1):379-89. PubMed ID: 3729423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose transport across the basolateral membrane of the chicken jejunum.
    Garriga C; Moretó M; Planas JM
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1330-5. PubMed ID: 9140037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of basolateral plasma-membrane vesicles from sheep parotid glands. Mechanisms of phosphate and D-glucose transport.
    Vayro S; Kemp R; Beechey RB; Shirazi-Beechey S
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):843-8. PubMed ID: 1953680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Oct; 735(1):86-94. PubMed ID: 6313056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na+-independent D-glucose transporter in the enterocyte basolateral membrane: orientation and cytochalasin B binding characteristics.
    Maenz DD; Cheeseman CI
    J Membr Biol; 1987; 97(3):259-66. PubMed ID: 3625759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells.
    Hsu SC; Molday RS
    J Biol Chem; 1991 Nov; 266(32):21745-52. PubMed ID: 1939198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous preparation of basolateral and brush-border membrane vesicles from sea bass intestinal epithelium.
    Drai P; Albertini-Berhaut J; Lafaurie M; Sudaka P; Giudicelli J
    Biochim Biophys Acta; 1990 Mar; 1022(3):251-9. PubMed ID: 2156552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex. Enzyme activities and some properties of glucose transport.
    Inui K; Okano T; Takano M; Kitazawa S; Hori R
    Biochim Biophys Acta; 1981 Sep; 647(1):150-4. PubMed ID: 6271206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation.
    Germinario RJ; Manuel S; Chang Z; Leckett B
    J Cell Physiol; 1992 Apr; 151(1):156-63. PubMed ID: 1560041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical ouabain-sensitive and ouabain-insensitive ATPases in rat colonic epithelium.
    Vagnerová R; Zemanová Z; Pácha J; Smídová J
    Acta Histochem; 2002; 104(4):407-11. PubMed ID: 12553711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells.
    Wiener H; Turnheim K; van Os CH
    J Membr Biol; 1989 Sep; 110(2):147-62. PubMed ID: 2553975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ transport in isolated guinea pig colonocytes: evidence for Na(+)-independent ouabain-sensitive K+ pump.
    Del Castillo JR; Súlbaran-Carrasco MC; Burguillos L
    Am J Physiol; 1994 Jun; 266(6 Pt 1):G1083-9. PubMed ID: 8023940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal-lateral membranes from rabbit renal cortex prepared on a large scale in a zonal rotor.
    Mamelok RD; Tse SS; Newcomb K; Bildstein CL; Liu D
    Biochim Biophys Acta; 1982 Oct; 692(1):115-25. PubMed ID: 6293559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characterization of butyrate transport across pig and human colonic luminal membrane.
    Ritzhaupt A; Ellis A; Hosie KB; Shirazi-Beechey SP
    J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):819-30. PubMed ID: 9508842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.