BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 8397101)

  • 21. Role of phosphoprotein phosphatases in the corpus luteum: II control of progesterone secretion by isolated rat luteal cells.
    Abayasekara DR; Ford SL; Persaud SJ; Jones PM
    J Endocrinol; 1996 Aug; 150(2):213-21. PubMed ID: 8869588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity.
    Cheng A; Balczon R; Zuo Z; Koons JS; Walsh AH; Honkanen RE
    Cancer Res; 1998 Aug; 58(16):3611-9. PubMed ID: 9721869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase.
    MacKintosh C; Coggins J; Cohen P
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):733-8. PubMed ID: 1847622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics.
    Bialojan C; Takai A
    Biochem J; 1988 Nov; 256(1):283-90. PubMed ID: 2851982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serine/threonine protein phosphatases and a protein phosphatase 1 inhibitor from Neurospora crassa.
    Zapella PD; da-Silva AM; da-Costa-Maia JC; Terenzi HF
    Braz J Med Biol Res; 1996 May; 29(5):599-604. PubMed ID: 9033809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of peripheral large granular lymphocytes with the serine/threonine phosphatase inhibitor, okadaic acid.
    McVicar DW; Mason AT; Bere EW; Ortaldo JR
    Eur J Immunol; 1994 Jan; 24(1):165-70. PubMed ID: 8020552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of protein phosphatase 1 stimulates secretion of Alzheimer amyloid precursor protein.
    da Cruz e Silva EF; da Cruz e Silva OA; Zaia CT; Greengard P
    Mol Med; 1995 Jul; 1(5):535-41. PubMed ID: 8529119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The inhibition of protein phosphatases 1 and 2A: a new target for rational anti-cancer drug design?
    McCluskey A; Ackland SP; Gardiner E; Walkom CC; Sakoff JA
    Anticancer Drug Des; 2001 Dec; 16(6):291-303. PubMed ID: 12375882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases.
    Honkanen RE; Dukelow M; Zwiller J; Moore RE; Khatra BS; Boynton AL
    Mol Pharmacol; 1991 Oct; 40(4):577-83. PubMed ID: 1656193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Inhibitor specificity of cantharidin and ATP analogues.
    Li YM; Mackintosh C; Casida JE
    Biochem Pharmacol; 1993 Oct; 46(8):1435-43. PubMed ID: 8240393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein phosphatases 1 and 2A in rabbit ciliary epithelium and iris-ciliary body.
    Liu JH
    Curr Eye Res; 1995 Feb; 14(2):95-9. PubMed ID: 7768112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism.
    Haystead TA; Sim AT; Carling D; Honnor RC; Tsukitani Y; Cohen P; Hardie DG
    Nature; 1989 Jan; 337(6202):78-81. PubMed ID: 2562908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse.
    Swingle M; Ni L; Honkanen RE
    Methods Mol Biol; 2007; 365():23-38. PubMed ID: 17200551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity.
    Ishihara H; Martin BL; Brautigan DL; Karaki H; Ozaki H; Kato Y; Fusetani N; Watabe S; Hashimoto K; Uemura D
    Biochem Biophys Res Commun; 1989 Mar; 159(3):871-7. PubMed ID: 2539153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of action of cantharidin in smooth muscle.
    Knapp J; Bokník P; Huke S; Lüss H; Müller FU; Müller T; Nacke P; Schmitz W; Vahlensieck U; Neumann J
    Br J Pharmacol; 1998 Mar; 123(5):911-9. PubMed ID: 9535020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of phosphate from phosphohistidine in proteins.
    Kim Y; Pesis KH; Matthews HR
    Biochim Biophys Acta; 1995 Aug; 1268(2):221-8. PubMed ID: 7662712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A.
    Cairns J; Qin S; Philp R; Tan YH; Guy GR
    J Biol Chem; 1994 Mar; 269(12):9176-83. PubMed ID: 7510704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of human lung mast cell function by phosphatase inhibitors.
    Peachell PT; Munday MR
    J Immunol; 1993 Oct; 151(7):3808-16. PubMed ID: 7690815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the cardiac contractile, biochemical and electrophysiological effects of cantharidin, a phosphatase inhibitor.
    Neumann J; Herzig S; Boknik P; Apel M; Kaspareit G; Schmitz W; Scholz H; Tepel M; Zimmermann N
    J Pharmacol Exp Ther; 1995 Jul; 274(1):530-9. PubMed ID: 7616441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of synaptosomal protein phosphorylation/dephosphorylation by calcium is antagonised by inhibition of protein phosphatases with okadaic acid.
    Sim AT; Dunkley PR; Jarvie PE; Rostas JA
    Neurosci Lett; 1991 May; 126(2):203-6. PubMed ID: 1656331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.