These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8397142)

  • 1. Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase.
    Klaidman LK; Adams JD; Leung AC; Kim SS; Cadenas E
    Free Radic Biol Med; 1993 Aug; 15(2):169-79. PubMed ID: 8397142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MPP+ redox cycling: a new mechanism involving hydride transfer.
    Adams JD; Klaidman LK; Cadenas E
    Ann N Y Acad Sci; 1992 May; 648():239-40. PubMed ID: 1637049
    [No Abstract]   [Full Text] [Related]  

  • 3. Acrolein-induced oxygen radical formation.
    Adams JD; Klaidman LK
    Free Radic Biol Med; 1993 Aug; 15(2):187-93. PubMed ID: 8397144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes.
    Adams JD; Klaidman LK; Leung AC
    Free Radic Biol Med; 1993 Aug; 15(2):181-6. PubMed ID: 8397143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase.
    Bando Y; Aki K
    J Biochem; 1991 Mar; 109(3):450-4. PubMed ID: 1652585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lipoamide dehydrogenase and metallothionein on 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced neurotoxicity.
    Dhanasekaran M; Albano CB; Pellet L; Karuppagounder SS; Uthayathas S; Suppiramaniam V; Brown-Borg H; Ebadi M
    Neurochem Res; 2008 Jun; 33(6):980-4. PubMed ID: 17768676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P-450 reductase.
    Sinha BK; Singh Y; Krishna G
    Biochem Biophys Res Commun; 1986 Mar; 135(2):583-8. PubMed ID: 3008728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers.
    Grinblat L; Sreider CM; Stoppani AO
    Biochem Int; 1991 Jan; 23(1):83-92. PubMed ID: 1650556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A redox reaction between MPP+ and MPDP+ to produce superoxide radicals does not impair mitochondrial function.
    Walker MJ; Jenner P; Marsden CD
    Biochem Pharmacol; 1991 Jul; 42(4):913-9. PubMed ID: 1651082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkinson's disease--redox mechanisms.
    Adams JD; Chang ML; Klaidman L
    Curr Med Chem; 2001 Jun; 8(7):809-14. PubMed ID: 11375751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic comparison of reduction and intramolecular electron transfer in milk xanthine oxidase and chicken liver xanthine dehydrogenase by laser flash photolysis.
    Walker MC; Hazzard JT; Tollin G; Edmondson DE
    Biochemistry; 1991 Jun; 30(24):5912-7. PubMed ID: 2043632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase.
    Ramsay RR; Kowal AT; Johnson MK; Salach JI; Singer TP
    Arch Biochem Biophys; 1987 Dec; 259(2):645-9. PubMed ID: 2827583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADH photo-oxidation is enhanced by a partially purified lambda-crystallin fraction from rabbit lens.
    Bando M; Oka M; Kawai K; Obazawa H; Takehana M
    Mol Vis; 2007 Sep; 13():1722-9. PubMed ID: 17960110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.