BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8397787)

  • 1. Predicting cleavability of peptide sequences by HIV protease via correlation-angle approach.
    Chou JJ
    J Protein Chem; 1993 Jun; 12(3):291-302. PubMed ID: 8397787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vector projection approach to predicting HIV protease cleavage sites in proteins.
    Chou KC; Zhang CT; Kézdy FJ
    Proteins; 1993 Jun; 16(2):195-204. PubMed ID: 8332607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins.
    Zhang CT; Chou KC
    Protein Eng; 1994 Jan; 7(1):65-73. PubMed ID: 8140096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support Vector Machines for predicting HIV protease cleavage sites in protein.
    Cai YD; Liu XJ; Xu XB; Chou KC
    J Comput Chem; 2002 Jan; 23(2):267-74. PubMed ID: 11924738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins.
    Chou KC
    J Biol Chem; 1993 Aug; 268(23):16938-48. PubMed ID: 8349584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the specificity of HIV protease: an application of Markov chain theory.
    Chou KC; Zhang CT
    J Protein Chem; 1993 Dec; 12(6):709-24. PubMed ID: 8136021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network method for predicting HIV protease cleavage sites in protein.
    Cai YD; Yu H; Chou KC
    J Protein Chem; 1998 Oct; 17(7):607-15. PubMed ID: 9853675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag-Pol polyproteins.
    Tözsér J; Bláha I; Copeland TD; Wondrak EM; Oroszlan S
    FEBS Lett; 1991 Apr; 281(1-2):77-80. PubMed ID: 2015912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins.
    Chou JJ
    Biopolymers; 1993 Sep; 33(9):1405-14. PubMed ID: 8400033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method.
    Chou KC; Tomasselli AG; Reardon IM; Heinrikson RL
    Proteins; 1996 Jan; 24(1):51-72. PubMed ID: 8628733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of mutant HIV-1 proteases cleaving a target sequence.
    Jensen JH; Willemoës M; Winther JR; De Vico L
    PLoS One; 2014; 9(5):e95833. PubMed ID: 24796579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L; Wenger T; Schramm HJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):484-8. PubMed ID: 8967903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base.
    Poorman RA; Tomasselli AG; Heinrikson RL; Kézdy FJ
    J Biol Chem; 1991 Aug; 266(22):14554-61. PubMed ID: 1860861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic binding of inhibitors to the protease from HIV type 1.
    Asante-Appiah E; Chan WW
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):113-7. PubMed ID: 8670094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haloperidol-based irreversible inhibitors of the HIV-1 and HIV-2 proteases.
    De Voss JJ; Sui Z; DeCamp DL; Salto R; Babé LM; Craik CS; Ortiz de Montellano PR
    J Med Chem; 1994 Mar; 37(5):665-73. PubMed ID: 8126707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HIV-1 protease as enzyme and substrate: mutagenesis of autolysis sites and generation of a stable mutant with retained kinetic properties.
    Mildner AM; Rothrock DJ; Leone JW; Bannow CA; Lull JM; Reardon IM; Sarcich JL; Howe WJ; Tomich CS; Smith CW
    Biochemistry; 1994 Aug; 33(32):9405-13. PubMed ID: 8068616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.