These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8397800)

  • 1. Postsynaptic potentials and morphological features of tectal cells in homing pigeons.
    Wu GY; Wang SR; Yan K
    Sci China B; 1993 Mar; 36(3):297-304. PubMed ID: 8397800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and laminar distribution of electrophysiologically identified cells in the pigeon's optic tectum: an intracellular study.
    Hardy O; Leresche N; Jassik-Gerschenfeld D
    J Comp Neurol; 1985 Mar; 233(3):390-404. PubMed ID: 2984257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic potentials of tectal neurons evoked by electrical stimulation of the pretectal nuclei in bullfrogs (Rana catesbeiana).
    Li X; Tsurudome K; Matsumoto N
    Brain Res; 2005 Aug; 1052(1):40-6. PubMed ID: 16004975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic potentials and morphology of tectal cells responding to electrical stimulation of the bullfrog nucleus isthmi.
    Wang SR; Matsumoto N
    Vis Neurosci; 1990 Nov; 5(5):479-88. PubMed ID: 2288896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic potentials in neurons of the pigeon's optic tectum in response to afferent stimulation from the retina and other visual structures: an intracellular study.
    Hardy O; Leresche N; Jassik-Gerschenfeld D
    Brain Res; 1984 Oct; 311(1):65-74. PubMed ID: 6488045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes.
    Antal M; Matsumoto N; Székely G
    J Comp Neurol; 1986 Apr; 246(2):238-53. PubMed ID: 3485664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory and inhibitory transmission from the optic tectum to nucleus isthmi and its vicinity in amphibians.
    Wu GY; Wang SR
    Brain Behav Evol; 1995; 46(1):43-9. PubMed ID: 7552220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-evoked modulation of sensorimotor pyramidal neuron EPSPs.
    Kohn A; Metz C; Tommerdahl MA; Whitsel BL
    J Neurophysiol; 2002 Dec; 88(6):3331-47. PubMed ID: 12466450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory synaptic potentials and morphological classification of tectal neurons of the frog.
    Matsumoto N; Bando T
    Brain Res; 1980 Jun; 192(1):39-48. PubMed ID: 6966523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-unit study of lateral line cells in the optic tectum of Xenopus laevis: evidence for bimodal lateral line/optic units.
    Lowe DA
    J Comp Neurol; 1987 Mar; 257(3):396-404. PubMed ID: 3558896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis.
    Marín G; Mpodozis J; Sentis E; Ossandón T; Letelier JC
    J Neurosci; 2005 Jul; 25(30):7081-9. PubMed ID: 16049185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intracellular study of pretectal influence on the optic tectum of the frog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2007 Mar; 23(2):113-8. PubMed ID: 17592534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Organization of the afferent input to the superior colliculus of the rabbit brain].
    Mass AM
    Neirofiziologiia; 1977; 9(3):281-9. PubMed ID: 882190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnocellular and parvocellular divisions of pigeon nucleus isthmi differentially modulate visual responses in the tectum.
    Wang SR; Wang YC; Frost BJ
    Exp Brain Res; 1995; 104(3):376-84. PubMed ID: 7589290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway.
    Luksch H; Cox K; Karten HJ
    J Comp Neurol; 1998 Jul; 396(3):399-414. PubMed ID: 9624592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of postsynaptic potentials of tectal neurons of the frog: correlation with impulses recorded from the terminals of retinotectal afferents.
    Nagano K; Li QL; Tamada A; Matsumoto N
    Exp Brain Res; 1988; 70(2):429-32. PubMed ID: 3260193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic organization of retinotectal connections of the frog application of pulse triggered averaging.
    Matsumoto N
    Acta Biol Hung; 1988; 39(2-3):217-20. PubMed ID: 3267202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of tectal neurons from telencephalic visual areas in pigeons.
    Britto LR
    Rev Bras Pesqui Med Biol; 1978 Oct; 11(4-5):223-7. PubMed ID: 725134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual actions of isthmic input to tectal neurons in a reptile, Gekko gekko.
    George SA; Wu GY; Li WC; Wang SR
    Vis Neurosci; 1999; 16(5):889-93. PubMed ID: 10580724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.