BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 8397855)

  • 1. The bilateral reach to grasp movement.
    Castiello U; Bennett KM; Stelmach GE
    Behav Brain Res; 1993 Jul; 56(1):43-57. PubMed ID: 8397855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bilateral reach-to-grasp movement of Parkinson's disease subjects.
    Castiello U; Bennett KM
    Brain; 1997 Apr; 120 ( Pt 4)():593-604. PubMed ID: 9153122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prehension with trunk assisted reaching.
    Saling M; Stelmach GE; Mescheriakov S; Berger M
    Behav Brain Res; 1996 Oct; 80(1-2):153-60. PubMed ID: 8905138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reach to grasp: the natural response to perturbation of object size.
    Castiello U; Bennett KM; Stelmach GE
    Exp Brain Res; 1993; 94(1):163-78. PubMed ID: 8335072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of different types of grasping on the transport component of prehension movements.
    Gentilucci M; Castiello U; Corradini ML; Scarpa M; Umiltà C; Rizzolatti G
    Neuropsychologia; 1991; 29(5):361-78. PubMed ID: 1886680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of normative hand movements during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Murgatroyd GS; Pilarski PM; Chapman CS; Vette AH; Hebert JS
    PLoS One; 2018; 13(6):e0199549. PubMed ID: 29928022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grip reorganization during wrist transport: the influence of an altered aperture.
    Saling M; Mescheriakov S; Molokanova E; Stelmach GE; Berger M
    Exp Brain Res; 1996 Mar; 108(3):493-500. PubMed ID: 8801129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common organization for unimanual and bimanual reach-to-grasp tasks.
    Tresilian JR; Stelmach GE
    Exp Brain Res; 1997 Jun; 115(2):283-99. PubMed ID: 9224856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reach to grasp: changes with age.
    Bennett KM; Castiello U
    J Gerontol; 1994 Jan; 49(1):P1-7. PubMed ID: 8282979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects.
    Gentilucci M; Toni I; Chieffi S; Pavesi G
    Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Within grasp but out of reach: evidence for a double dissociation between imagined hand and arm movements in the left cerebral hemisphere.
    Johnson SH; Corballis PM; Gazzaniga MS
    Neuropsychologia; 2001; 39(1):36-50. PubMed ID: 11115654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different coupling for the reach and grasp components in bimanual prehension movements.
    Dohle C; Ostermann G; Hefter H; Freund HJ
    Neuroreport; 2000 Nov; 11(17):3787-91. PubMed ID: 11117492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements.
    Rand MK; Van Gemmert AW; Hossain AB; Shimansky YP; Stelmach GE
    Exp Brain Res; 2012 Jun; 219(2):293-304. PubMed ID: 22526948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait and reach-to-grasp movements are mutually modified when performed simultaneously.
    Rinaldi NM; Moraes R
    Hum Mov Sci; 2015 Apr; 40():38-58. PubMed ID: 25528437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.