These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 839812)
21. A Petri net approach to the study of persistence in chemical reaction networks. Angeli D; De Leenheer P; Sontag ED Math Biosci; 2007 Dec; 210(2):598-618. PubMed ID: 17869313 [TBL] [Abstract][Full Text] [Related]
22. III. Kinetics of enzyme reactions with inactivation steps. Galvez J; Varon R; Carmona FG J Theor Biol; 1981 Mar; 89(1):37-44. PubMed ID: 7278307 [No Abstract] [Full Text] [Related]
23. A generalized theory of the transition time for sequential enzyme reactions. Easterby JS Biochem J; 1981 Oct; 199(1):155-61. PubMed ID: 7337699 [TBL] [Abstract][Full Text] [Related]
24. Predictions of enzymatic parameters: a mini-review with focus on enzymes for biofuel. Yan S; Wu G Appl Biochem Biotechnol; 2013 Oct; 171(3):590-615. PubMed ID: 23813404 [TBL] [Abstract][Full Text] [Related]
25. Classification of chemical reactions and chemoinformatic processing of enzymatic transformations. Latino DA; Aires-de-Sousa J Methods Mol Biol; 2011; 672():325-40. PubMed ID: 20838975 [TBL] [Abstract][Full Text] [Related]
26. A simple model for barrier frequencies for enzymatic reactions. Tuñón I; Hynes JT Chemphyschem; 2011 Jan; 12(1):184-90. PubMed ID: 21226200 [TBL] [Abstract][Full Text] [Related]
27. Control of enzymatic velocity under near-equilibrium conditions. Anderson JH J Theor Biol; 1974 Sep; 47(1):153-61. PubMed ID: 4459578 [No Abstract] [Full Text] [Related]
28. Control theory of one enzyme. Kholodenko BN; Westerhoff HV Biochim Biophys Acta; 1994 Oct; 1208(2):294-305. PubMed ID: 7947961 [TBL] [Abstract][Full Text] [Related]
29. Derivation of a valid momentary first-order rate constant for kinetic and energetic analyses of enzymatic reactions. Imoto T J Biochem; 2016 Dec; 160(6):381-389. PubMed ID: 27507819 [TBL] [Abstract][Full Text] [Related]
31. Experimental designs for estimating the kinetic parameters for enzyme-catalysed reactions. Duggleby RG J Theor Biol; 1979 Dec; 81(4):671-84. PubMed ID: 537393 [No Abstract] [Full Text] [Related]
32. Kinetic analysis of chemical or enzymic reactions: an algorithm for the determination of the initial velocity of product formation by the use of a taylor series in reaction time. Rakitzis ET J Theor Biol; 1997 Oct; 188(3):387-9. PubMed ID: 9344744 [No Abstract] [Full Text] [Related]
33. Effects of periodic input on the quasi-steady state assumptions for enzyme-catalysed reactions. Stoleriu I; Davidson FA; Liu JL J Math Biol; 2005 Feb; 50(2):115-32. PubMed ID: 15322823 [TBL] [Abstract][Full Text] [Related]
34. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation. Anderson JB; Anderson LE; Kussmann J J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305 [TBL] [Abstract][Full Text] [Related]
35. Modeling of uncertainties in biochemical reactions. Mišković L; Hatzimanikatis V Biotechnol Bioeng; 2011 Feb; 108(2):413-23. PubMed ID: 20830674 [TBL] [Abstract][Full Text] [Related]
36. Studies on the rate of diffusion-controlled reactions of enzymes. Spatial factor and force field factor. Kuo-chen C; Shou-ping J Sci Sin; 1974 Oct; 27(5):664-80. PubMed ID: 4219062 [No Abstract] [Full Text] [Related]
37. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate. ter Kuile BH; Cook M Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344 [TBL] [Abstract][Full Text] [Related]