These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8398211)

  • 21. Induction of heat-shock proteins and accumulation of trehalose by TPN in Saccharomyces cerevisiae.
    Fujita K; Iwahashi H; Kodama O; Komatsu Y
    Biochem Biophys Res Commun; 1995 Nov; 216(3):1041-7. PubMed ID: 7488177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant.
    De Virgilio C; Hottiger T; Dominguez J; Boller T; Wiemken A
    Eur J Biochem; 1994 Jan; 219(1-2):179-86. PubMed ID: 8306984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress.
    Simola M; Hänninen AL; Stranius SM; Makarow M
    Mol Microbiol; 2000 Jul; 37(1):42-53. PubMed ID: 10931304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase.
    Panaretou B; Piper PW
    Eur J Biochem; 1992 Jun; 206(3):635-40. PubMed ID: 1535043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective role of trehalose during heat stress in Saccharomyces cerevisiae.
    Eleutherio EC; Araujo PS; Panek AD
    Cryobiology; 1993 Dec; 30(6):591-6. PubMed ID: 8306706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose.
    Singer MA; Lindquist S
    Trends Biotechnol; 1998 Nov; 16(11):460-8. PubMed ID: 9830154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small influence of HSP90 levels on the trehalose and heat shock element inductions of the yeast heat shock response.
    Cheng L; Kirk N; Piper PW
    Biochem Biophys Res Commun; 1993 Aug; 195(1):201-7. PubMed ID: 8363601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Barotolerance is dependent on both trehalose and heat shock protein 104 but is essentially different from thermotolerance in Saccharomyces cerevisiae.
    Iwahashi H; Obuchi K; Fujii S; Komatsu Y
    Lett Appl Microbiol; 1997 Jul; 25(1):43-7. PubMed ID: 9248080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor.
    Conlin LK; Nelson HC
    Mol Cell Biol; 2007 Feb; 27(4):1505-15. PubMed ID: 17145780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation.
    Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T
    Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.
    Piper PW
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):121-7. PubMed ID: 8586257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance.
    Vianna CR; Silva CL; Neves MJ; Rosa CA
    Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae.
    Patriarca EJ; Maresca B
    Exp Cell Res; 1990 Sep; 190(1):57-64. PubMed ID: 2143732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Authentic temperature-regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance.
    Cheng L; Hirst K; Piper PW
    Biochim Biophys Acta; 1992 Aug; 1132(1):26-34. PubMed ID: 1511010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica.
    Deegenaars ML; Watson K
    Extremophiles; 1998 Jan; 2(1):41-9. PubMed ID: 9676242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae?
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Knorre DA; Voinikov VK
    Curr Genet; 2005 Jul; 48(1):44-59. PubMed ID: 15983831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast.
    Lindquist S; Kim G
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5301-6. PubMed ID: 8643570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultradian rhythm of trehalose levels coupled to heat resistance in continuous cultures of the yeast Saccharomyces cerevisiae.
    Uno T; Wang J; Mitsui K; Umetani K; Tamura K; Tsurugi K
    Chronobiol Int; 2002 Mar; 19(2):361-75. PubMed ID: 12025930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.