These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 8398211)
41. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Hottiger T; De Virgilio C; Hall MN; Boller T; Wiemken A Eur J Biochem; 1994 Jan; 219(1-2):187-93. PubMed ID: 8306985 [TBL] [Abstract][Full Text] [Related]
42. Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance. Attfield PV; Raman A; Northcott CJ FEMS Microbiol Lett; 1992 Jul; 73(3):271-6. PubMed ID: 1426991 [TBL] [Abstract][Full Text] [Related]
43. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
44. Concomitant appearance of intrinsic thermotolerance and storage of trehalose in Saccharomyces cerevisiae during early respiratory phase of batch-culture is CIF1-dependent. Attfield PV; Kletsas S; Hazell BW Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2625-32. PubMed ID: 8000532 [TBL] [Abstract][Full Text] [Related]
45. Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae. Panek AD; Ferreira R; Panek AC Biochimie; 1989 Mar; 71(3):313-8. PubMed ID: 2545278 [TBL] [Abstract][Full Text] [Related]
46. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Li GC; Mivechi NF; Weitzel G Int J Hyperthermia; 1995; 11(4):459-88. PubMed ID: 7594802 [TBL] [Abstract][Full Text] [Related]
47. Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Swan TM; Watson K Can J Microbiol; 1999 Jun; 45(6):472-9. PubMed ID: 10453475 [TBL] [Abstract][Full Text] [Related]
48. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Mahmud SA; Hirasawa T; Furusawa C; Yoshikawa K; Shimizu H J Biosci Bioeng; 2012 Apr; 113(4):526-8. PubMed ID: 22222142 [TBL] [Abstract][Full Text] [Related]
49. Uncoupling thermotolerance from the induction of heat shock proteins. Smith BJ; Yaffe MP Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11091-4. PubMed ID: 1763024 [TBL] [Abstract][Full Text] [Related]
51. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Jeffries TW; Jin YS Adv Appl Microbiol; 2000; 47():221-68. PubMed ID: 12876799 [TBL] [Abstract][Full Text] [Related]
52. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Grant CM; Firoozan M; Tuite MF Mol Microbiol; 1989 Feb; 3(2):215-20. PubMed ID: 2548059 [TBL] [Abstract][Full Text] [Related]
53. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. Matsumoto R; Akama K; Rakwal R; Iwahashi H BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719 [TBL] [Abstract][Full Text] [Related]
54. Loss of heat-shock acquisition of thermotolerance in yeast is not correlated with loss of heat-shock proteins. Cavicchioli R; Watson K FEBS Lett; 1986 Oct; 207(1):149-52. PubMed ID: 3533625 [TBL] [Abstract][Full Text] [Related]
55. Responses of Saccharomyces cerevisiae to thermal stress. Guyot S; Ferret E; Gervais P Biotechnol Bioeng; 2005 Nov; 92(4):403-9. PubMed ID: 16028292 [TBL] [Abstract][Full Text] [Related]
56. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts. Panek AC; VĂ¢nia JJ; Paschoalin MF; Panek D Biochimie; 1990 Jan; 72(1):77-9. PubMed ID: 2160289 [TBL] [Abstract][Full Text] [Related]
57. Effect of amiodarone on thermotolerance and Hsp104p synthesis in the yeast Saccharomyces cerevisiae. Fedoseeva IV; Pjatricas DV; Varakina NN; Rusaleva TM; Stepanov AV; Rikhvanov EG; Borovskii GB; Voinikov VK Biochemistry (Mosc); 2012 Jan; 77(1):78-86. PubMed ID: 22339636 [TBL] [Abstract][Full Text] [Related]
58. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Satomura A; Miura N; Kuroda K; Ueda M Sci Rep; 2016 Mar; 6():23157. PubMed ID: 26984760 [TBL] [Abstract][Full Text] [Related]
59. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. Plesset J; Ludwig JR; Cox BS; McLaughlin CS J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970 [TBL] [Abstract][Full Text] [Related]
60. Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae. Mir SS; Fiedler D; Cashikar AG Mol Cell Biol; 2009 Jan; 29(1):187-200. PubMed ID: 18936161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]