These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 839855)

  • 1. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP.
    Zimmerman SS; Pottle MS; Némethy G; Scheraga HA
    Macromolecules; 1977; 10(1):1-9. PubMed ID: 839855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of cis, trans, and nonplanar peptide groups.
    Zimmerman SS; Scheraga HA
    Macromolecules; 1976; 9(3):408-16. PubMed ID: 940354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational study on trans- and cis-N-acetyl-N'-methylamides of Pro-Xaa dipeptides.
    Han SJ; Kang YK
    Int J Pept Protein Res; 1993 Dec; 42(6):518-26. PubMed ID: 8307683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests.
    Roterman IK; Lambert MH; Gibson KD; Scheraga HA
    J Biomol Struct Dyn; 1989 Dec; 7(3):421-53. PubMed ID: 2627294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for hydration of peptides and its application to the conformational analysis of terminally blocked amino acids and dipeptides.
    Némethy G; Hodes ZI; Scheraga HA
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5760-4. PubMed ID: 282601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of aminosuccinyl dipeptides Ac-Asu-X-NHMe from empirical energy calculations.
    Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A
    Pept Res; 1990; 3(6):262-70. PubMed ID: 2134069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the three-dimensional structure of the membrane-bound portion of melittin from its amino acid sequence.
    Pincus MR; Klausner RD; Scheraga HA
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):5107-10. PubMed ID: 6956920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical analysis of side-chain conformations in proteins: comparison with ECEPP predictions.
    Nayeem A; Scheraga HA
    J Protein Chem; 1994 Apr; 13(3):283-96. PubMed ID: 7945791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9.
    Roterman IK; Gibson KD; Scheraga HA
    J Biomol Struct Dyn; 1989 Dec; 7(3):391-419. PubMed ID: 2627293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational study of angiotensin II.
    Shin YA; Yoo SE
    Biopolymers; 1996 Feb; 38(2):183-90. PubMed ID: 8589252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy--application to DNS1-c-[D-A2,bu2,Trp4,Leu5]enkephalin and DNS1-c-[D-A2bu2,Trp4,D-Leu5]enkephalin.
    Groth M; Malicka J; Czaplewski C; Ołdziej S; Lankiewicz L; Wiczk W; Liwo A
    J Biomol NMR; 1999 Dec; 15(4):315-30. PubMed ID: 10685340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo calculations on the conformations of models for the glycopeptide linkage of glycoproteins.
    Duben AJ; Bush CA
    Arch Biochem Biophys; 1983 Aug; 225(1):1-15. PubMed ID: 6614910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on hydrogen bonds. Part V--Hydrogen bonding in energy minimization studies of peptides.
    Paul PK; Ramakrishnan C
    J Biomol Struct Dyn; 1985 Feb; 2(5):879-98. PubMed ID: 3916936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method.
    Kaźmierkiewicz R; Liwo A; Scheraga HA
    J Comput Chem; 2002 May; 23(7):715-23. PubMed ID: 11948589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferred conformation of the tert-butoxycarbonyl-amino group in peptides.
    Benedetti E; Pedone C; Toniolo C; Némethy G; Pottle MS; Scheraga HA
    Int J Pept Protein Res; 1980 Aug; 16(2):156-72. PubMed ID: 7007264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin.
    Ripoll DR; Scheraga HA
    J Protein Chem; 1989 Apr; 8(2):263-87. PubMed ID: 2736043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intrinsic helix-forming tendency of L-alanine.
    Vila J; Williams RL; Grant JA; Wójcik J; Scheraga HA
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7821-5. PubMed ID: 1502201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Pitera JW; Kollman PA
    Proteins; 2000 Nov; 41(3):385-97. PubMed ID: 11025549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.