BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 83991)

  • 1. Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa.
    Hoshino T; Kageyama M
    J Bacteriol; 1979 Jan; 137(1):73-81. PubMed ID: 83991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization and reconstitution of sodium-dependent transport system for branched-chain amino acids from Pseudomonas aeruginosa.
    Uratani Y
    J Biol Chem; 1985 Aug; 260(18):10023-6. PubMed ID: 3926775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.
    Schneider EG; Hammerman MR; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7650-6. PubMed ID: 6156940
    [No Abstract]   [Full Text] [Related]  

  • 4. Active alanine transport in isolated brush border membranes.
    Sigrist-Nelson K; Murer H; Hopfer U
    J Biol Chem; 1975 Jul; 250(14):5674-80. PubMed ID: 1141245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.
    Lever JE
    J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport systems for branched-chain amino acids in Pseudomonas aeruginosa.
    Hoshino T
    J Bacteriol; 1979 Sep; 139(3):705-12. PubMed ID: 113383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of L-leucine hydroxy analogue and L-lactate in human small intestinal brush border membrane vesicles.
    Friedrich M; Murer H; Sterchi E; Berger EG
    Eur J Clin Invest; 1992 Feb; 22(2):73-8. PubMed ID: 1315280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system.
    MacDonald RE; Lanyi LK
    Biochemistry; 1975 Jul; 14(13):2882-9. PubMed ID: 50859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Placental membrane transport: leucine transport across the brush border and basal cell membrane surfaces.
    Anand RJ; Kanwar U; Sanyal SN
    Res Exp Med (Berl); 1996; 196(1):29-43. PubMed ID: 8833485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles.
    Friedrich M; Murer H; Berger EG
    Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+(Li+)/branched-chain amino acid cotransport in Pseudomonas aeruginosa.
    Uratani Y; Tsuchiya T; Akamatsu Y; Hoshino T
    J Membr Biol; 1989 Jan; 107(1):57-62. PubMed ID: 2537901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine transport coupled to proton movement in membrane vesicles from Chang liver cells.
    Mohri T; Mitsumoto Y; Ohyashiki T
    Biochem Int; 1983 Aug; 7(2):159-67. PubMed ID: 6089808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the L-leucine-H+ cotransporter of the plasma membrane from Chang liver cells into proteoliposomes.
    Mitsumoto Y; Mohri T
    Biochim Biophys Acta; 1991 Jan; 1061(2):171-4. PubMed ID: 1998690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.