BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8399158)

  • 21. Organization of an efficient carbonic anhydrase: implications for the mechanism based on structure-function studies of a T199P/C206S mutant.
    Huang S; Sjöblom B; Sauer-Eriksson AE; Jonsson BH
    Biochemistry; 2002 Jun; 41(24):7628-35. PubMed ID: 12056894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III.
    Silverman DN; Tu C; Chen X; Tanhauser SM; Kresge AJ; Laipis PJ
    Biochemistry; 1993 Oct; 32(40):10757-62. PubMed ID: 8399223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic and spectroscopic studies of hydrophilic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II.
    Krebs JF; Rana F; Dluhy RA; Fierke CA
    Biochemistry; 1993 May; 32(17):4496-505. PubMed ID: 8485128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The catalytic properties of murine carbonic anhydrase VII.
    Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN
    Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Zn(II)-binding site engineered into retinol-binding protein exhibits metal-ion specificity and allows highly efficient affinity purification with a newly designed metal ligand.
    Schmidt AM; Müller HN; Skerra A
    Chem Biol; 1996 Aug; 3(8):645-53. PubMed ID: 8807898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II.
    Xue Y; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salicylaldoxime derivatives as new leads for the development of carbonic anhydrase inhibitors.
    Tuccinardi T; Bertini S; Granchi C; Ortore G; Macchia M; Minutolo F; Martinelli A; Supuran CT
    Bioorg Med Chem; 2013 Mar; 21(6):1511-5. PubMed ID: 23018095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray crystallographic studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis.
    Scolnick LR; Christianson DW
    Biochemistry; 1996 Dec; 35(51):16429-34. PubMed ID: 8987974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
    Landro JA; Schimmel P
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes.
    Håkansson K; Carlsson M; Svensson LA; Liljas A
    J Mol Biol; 1992 Oct; 227(4):1192-204. PubMed ID: 1433293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The esterase activity of bovine carbonic anhydrase B above pH 9. Reversible and cooalent inhibition by acetozolamide.
    Wells JW; Kandel SI; Kandel M; Gornall AG
    J Biol Chem; 1975 May; 250(9):3522-30. PubMed ID: 235550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase.
    Qian M; Tu C; Earnhardt JN; Laipis PJ; Silverman DN
    Biochemistry; 1997 Dec; 36(50):15758-64. PubMed ID: 9398305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C; Fillebeen T; Morlok MM; Parkin G
    J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN
    Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the conserved active-site residues Tyr7, Glu106 and Thr199 for the catalytic function of human carbonic anhydrase II.
    Liang Z; Xue Y; Behravan G; Jonsson BH; Lindskog S
    Eur J Biochem; 1993 Feb; 211(3):821-7. PubMed ID: 8436138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of N,N-diethyldithiocarbamate and other bidentate ligands with Zn, Co and Cu bovine carbonic anhydrases. Inhibition of the enzyme activity and evidence for stable ternary enzyme-metal-ligand complexes.
    Morpurgo L; Desideri A; Rigo A; Viglino P; Rotilio G
    Biochim Biophys Acta; 1983 Aug; 746(3):168-75. PubMed ID: 6309239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the metal ion in the refolding of denatured bovine Co(II)-carbonic anhydrase II.
    Bergenhem N; Carlsson U
    Biochim Biophys Acta; 1989 Oct; 998(3):277-85. PubMed ID: 2508759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases.
    Merz KM
    J Mol Biol; 1990 Aug; 214(4):799-802. PubMed ID: 1974931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-.
    Xue Y; Vidgren J; Svensson LA; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Jan; 15(1):80-7. PubMed ID: 8451242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zn(II) coordination domain mutants of T4 gene 32 protein.
    Giedroc DP; Giu HW; Khan R; King GC; Chen K
    Biochemistry; 1992 Jan; 31(3):765-74. PubMed ID: 1731933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.