BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8399161)

  • 1. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Jul; 32(28):7089-97. PubMed ID: 8343502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding modes for substrate and a proposed transition-state analogue of protozoan nucleoside hydrolase.
    Parkin DW; Schramm VL
    Biochemistry; 1995 Oct; 34(42):13961-6. PubMed ID: 7577992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata.
    Degano M; Gopaul DN; Scapin G; Schramm VL; Sacchettini JC
    Biochemistry; 1996 May; 35(19):5971-81. PubMed ID: 8634238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases.
    Miles RW; Tyler PC; Evans GB; Furneaux RH; Parkin DW; Schramm VL
    Biochemistry; 1999 Oct; 38(40):13147-54. PubMed ID: 10529186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amidrazone analogues of D-ribofuranose as transition-state inhibitors of nucleoside hydrolase.
    Boutellier M; Horenstein BA; Semenyaka A; Schramm VL; Ganem B
    Biochemistry; 1994 Apr; 33(13):3994-4000. PubMed ID: 8142404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex.
    Deng H; Chan AW; Bagdassarian CK; Estupiñán B; Ganem B; Callender RH; Schramm VL
    Biochemistry; 1996 May; 35(19):6037-47. PubMed ID: 8634245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata.
    Estupiñán B; Schramm VL
    J Biol Chem; 1994 Sep; 269(37):23068-73. PubMed ID: 8083208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition-state analogue.
    Mazumder D; Kahn K; Bruice TC
    J Am Chem Soc; 2002 Jul; 124(30):8825-33. PubMed ID: 12137535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of inhibitor binding free energies by quantum neural networks. Nucleoside analogues binding to trypanosomal nucleoside hydrolase.
    Braunheim BB; Miles RW; Schramm VL; Schwartz SD
    Biochemistry; 1999 Dec; 38(49):16076-83. PubMed ID: 10587430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleoside hydrolase from Crithidia fasciculata. Metabolic role, purification, specificity, and kinetic mechanism.
    Parkin DW; Horenstein BA; Abdulah DR; Estupiñán B; Schramm VL
    J Biol Chem; 1991 Nov; 266(31):20658-65. PubMed ID: 1939115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic potential surface analysis of the transition state for AMP nucleosidase and for formycin 5'-phosphate, a transition-state inhibitor.
    Ehrlich JI; Schramm VL
    Biochemistry; 1994 Aug; 33(30):8890-6. PubMed ID: 8043576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring nucleoside hydrolase catalysis in silico: molecular dynamics study of enzyme-bound substrate and transition state.
    Mazumder D; Bruice TC
    J Am Chem Soc; 2002 Dec; 124(49):14591-600. PubMed ID: 12465969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
    Fedorov A; Shi W; Kicska G; Fedorov E; Tyler PC; Furneaux RH; Hanson JC; Gainsford GJ; Larese JZ; Schramm VL; Almo SC
    Biochemistry; 2001 Jan; 40(4):853-60. PubMed ID: 11170405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases.
    Parkin DW; Limberg G; Tyler PC; Furneaux RH; Chen XY; Schramm VL
    Biochemistry; 1997 Mar; 36(12):3528-34. PubMed ID: 9132003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax.
    Versées W; Decanniere K; Pellé R; Depoorter J; Brosens E; Parkin DW; Steyaert J
    J Mol Biol; 2001 Apr; 307(5):1363-79. PubMed ID: 11292348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor.
    Degano M; Almo SC; Sacchettini JC; Schramm VL
    Biochemistry; 1998 May; 37(18):6277-85. PubMed ID: 9572842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state analysis of adenosine nucleosidase from yellow lupin (Lupinus luteus).
    Bates C; Kendrick Z; McDonald N; Kline PC
    Phytochemistry; 2006 Jan; 67(1):5-12. PubMed ID: 16300810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.