These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 8399182)
1. Functional nucleotide-binding domain in the F0F1-ATPsynthase alpha subunit from the yeast Schizosaccharomyces pombe. Falson P; Penin F; Divita G; Lavergne JP; Di Pietro A; Goody RS; Gautheron DC Biochemistry; 1993 Oct; 32(39):10387-97. PubMed ID: 8399182 [TBL] [Abstract][Full Text] [Related]
2. Differential nucleotide binding to catalytic and noncatalytic sites and related conformational changes involving alpha/beta-subunit interactions as monitored by sensitive intrinsic fluorescence in Schizosaccharomyces pombe mitochondrial F1. Divita G; Di Pietro A; Roux B; Gautheron DC Biochemistry; 1992 Jun; 31(25):5791-8. PubMed ID: 1319203 [TBL] [Abstract][Full Text] [Related]
3. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371 [TBL] [Abstract][Full Text] [Related]
4. Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer. Divita G; Goody RS; Gautheron DC; Di Pietro A J Biol Chem; 1993 Jun; 268(18):13178-86. PubMed ID: 8514756 [TBL] [Abstract][Full Text] [Related]
5. Tryptophan fluorescence provides a direct probe of nucleotide binding in the noncatalytic sites of Escherichia coli F1-ATPase. Weber J; Wilke-Mounts S; Grell E; Senior AE J Biol Chem; 1994 Apr; 269(15):11261-8. PubMed ID: 8157656 [TBL] [Abstract][Full Text] [Related]
6. Structure-function relationships of mitochondrial ATPase-ATPsynthase using Schizosaccharomyces pombe yeast mutants with altered F1 subunits. Di Pietro A; Jault JM; Falson P; Divita G; Gautheron DC Biochimie; 1989 Aug; 71(8):931-40. PubMed ID: 2529909 [TBL] [Abstract][Full Text] [Related]
7. Structural insight into the cooperativity between catalytic and noncatalytic sites of F1-ATPase. Falson P; Goffeau A; Boutry M; Jault JM Biochim Biophys Acta; 2004 Jul; 1658(1-2):133-40. PubMed ID: 15282184 [TBL] [Abstract][Full Text] [Related]
8. Revertant of the yeast Schizosaccharomyces pombe with modified alpha subunits of mitochondrial ATPase-ATPsynthase: impaired nucleotide interactions with soluble and membrane-bound enzyme. Falson P; Di Pietro A; Darbouret D; Jault JM; Gautheron DC; Boutry M; Goffeau A Biochem Biophys Res Commun; 1987 Nov; 148(3):1182-8. PubMed ID: 2891355 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence quenching by nucleotides of the plasma membrane H+-ATPase from Kluyveromyces lactis. Sampedro JG; Ruiz-Granados YG; Nájera H; Téllez-Valencia A; Uribe S Biochemistry; 2007 May; 46(18):5616-22. PubMed ID: 17439159 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions. Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214 [TBL] [Abstract][Full Text] [Related]
11. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. Weber J; Bowman C; Senior AE J Biol Chem; 1996 Aug; 271(31):18711-8. PubMed ID: 8702526 [TBL] [Abstract][Full Text] [Related]
12. alpha-Aspartate 261 is a key residue in noncatalytic sites of Escherichia coli F1-ATPase. Weber J; Bowman C; Wilke-Mounts S; Senior AE J Biol Chem; 1995 Sep; 270(36):21045-9. PubMed ID: 7673131 [TBL] [Abstract][Full Text] [Related]
13. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of alpha-subunit tryptophan residues in Schizosaccharomyces pombe mitochondrial F1 adenosine 5'-triphosphatase: differential reactivity and role in activity. Divita G; Jault JM; Gautheron DC; Di Pietro A Biochemistry; 1993 Feb; 32(4):1017-24. PubMed ID: 8424930 [TBL] [Abstract][Full Text] [Related]
15. Purification from a yeast mutant of mitochondrial F1 with modified beta-subunit. High affinity for nucleotides and high negative cooperativity of ATPase activity. Falson P; Di Pietro A; Jault JM; Gautheron DC; Boutry M Biochim Biophys Acta; 1989 Jun; 975(1):119-26. PubMed ID: 2525405 [TBL] [Abstract][Full Text] [Related]
16. Aromatic rings of tyrosine residues at adenine nucleotide binding sites of the beta subunits of F1-ATPase are not necessary for ATPase activity. Odaka M; Kobayashi H; Muneyuki E; Yoshida M Biochem Biophys Res Commun; 1990 Apr; 168(1):372-8. PubMed ID: 2139333 [TBL] [Abstract][Full Text] [Related]
17. Reassembly of Synechocystis sp. PCC 6803 F1-ATPase from its over-expressed subunits. Steinemann D; Engelbrecht S; Lill H FEBS Lett; 1995 Apr; 362(2):171-4. PubMed ID: 7720866 [TBL] [Abstract][Full Text] [Related]
18. F1-ATPase alpha-subunit made up from two fragments (1-395, 396-503) is stabilized by ATP and complexes containing it obey altered kinetics. Miyauchi M; Tozawa K; Yoshida M Biochim Biophys Acta; 1995 Apr; 1229(2):225-32. PubMed ID: 7727499 [TBL] [Abstract][Full Text] [Related]
19. Escherichia coli F1-ATPase can use GTP-nonchaseable bound adenine nucleotide to synthesize ATP in dimethyl sulfoxide. Beharry S; Bragg PD Biochemistry; 1992 Nov; 31(46):11472-6. PubMed ID: 1445881 [TBL] [Abstract][Full Text] [Related]