These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 8399196)
1. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA. Kim HY; Pelka H; Brunie S; Schulman LH Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196 [TBL] [Abstract][Full Text] [Related]
2. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase. Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493 [TBL] [Abstract][Full Text] [Related]
3. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons. Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169 [TBL] [Abstract][Full Text] [Related]
4. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase. Ghosh G; Pelka H; Schulman LH Biochemistry; 1990 Mar; 29(9):2220-5. PubMed ID: 2186810 [TBL] [Abstract][Full Text] [Related]
5. Binding of the yeast tRNA(Met) anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions. Despons L; Senger B; Fasiolo F; Walter P J Mol Biol; 1992 Jun; 225(3):897-907. PubMed ID: 1602489 [TBL] [Abstract][Full Text] [Related]
6. tRNA recognition site of Escherichia coli methionyl-tRNA synthetase. Leon O; Schulman LH Biochemistry; 1987 Aug; 26(17):5416-22. PubMed ID: 3118944 [TBL] [Abstract][Full Text] [Related]
7. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase. Ghosh G; Brunie S; Schulman LH J Biol Chem; 1991 Sep; 266(26):17136-41. PubMed ID: 1654323 [TBL] [Abstract][Full Text] [Related]
8. A site in the dinucleotide-fold domain contributes to the accuracy of tRNA selection by Escherichia coli methionyl-tRNA synthetase. Kim HY; Pak M; Jakubowski H Mol Cells; 1998 Oct; 8(5):623-8. PubMed ID: 9856352 [TBL] [Abstract][Full Text] [Related]
9. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase. Schulman LH; Pelka H; Susani M Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482 [TBL] [Abstract][Full Text] [Related]
10. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
11. Function independence of microhelix aminoacylation from anticodon binding in a class I tRNA synthetase. Kim S; Schimmel P J Biol Chem; 1992 Aug; 267(22):15563-7. PubMed ID: 1639796 [TBL] [Abstract][Full Text] [Related]
12. Evidence for breaking domain-domain functional communication in a synthetase-tRNA complex. Alexander RW; Schimmel P Biochemistry; 1999 Dec; 38(49):16359-65. PubMed ID: 10587461 [TBL] [Abstract][Full Text] [Related]
13. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli. Mechulam Y; Dardel F; Le Corre D; Blanquet S; Fayat G J Mol Biol; 1991 Feb; 217(3):465-75. PubMed ID: 1847216 [TBL] [Abstract][Full Text] [Related]
14. Yeast methionyl-tRNA synthetase: analysis of the N-terminal extension and the putative tRNA anticodon binding region by site-directed mutagenesis. Walter P; Despons L; Laforet M; Ebel JP; Fasiolo F Biochimie; 1990 Aug; 72(8):537-44. PubMed ID: 2126459 [TBL] [Abstract][Full Text] [Related]
15. Binding of the anticodon domain of tRNA(fMet) to Escherichia coli methionyl-tRNA synthetase. Meinnel T; Mechulam Y; Blanquet S; Fayat G J Mol Biol; 1991 Jul; 220(2):205-8. PubMed ID: 1856854 [TBL] [Abstract][Full Text] [Related]
16. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Romby P; Brunel C; Caillet J; Springer M; Grunberg-Manago M; Westhof E; Ehresmann C; Ehresmann B Nucleic Acids Res; 1992 Nov; 20(21):5633-40. PubMed ID: 1280807 [TBL] [Abstract][Full Text] [Related]
17. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Meinnel T; Mechulam Y; Fayat G; Blanquet S Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786 [TBL] [Abstract][Full Text] [Related]
18. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase. Schulman LH; Pelka H Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155 [TBL] [Abstract][Full Text] [Related]
19. Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis. Gale AJ; Shi JP; Schimmel P Biochemistry; 1996 Jan; 35(2):608-15. PubMed ID: 8555234 [TBL] [Abstract][Full Text] [Related]
20. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. Meinnel T; Mechulam Y; Lazennec C; Blanquet S; Fayat G J Mol Biol; 1993 Jan; 229(1):26-36. PubMed ID: 8421312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]