These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8399202)

  • 1. 13C nuclear magnetic resonance relaxation-derived psi, phi bond rotational energy barriers and rotational restrictions for glycine 13C alpha-methylenes in a GXX-repeat hexadecapeptide.
    Daragan VA; Kloczewiak MA; Mayo KH
    Biochemistry; 1993 Oct; 32(40):10580-90. PubMed ID: 8399202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tri- and diglycine backbone rotational dynamics investigated by 13C NMR multiplet relaxation and molecular dynamics simulations.
    Daragan VA; Mayo KH
    Biochemistry; 1993 Nov; 32(43):11488-99. PubMed ID: 8218215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal motional amplitudes and correlated bond rotations in an alpha-helical peptide derived from 13C and 15N NMR relaxation.
    Idiyatullin D; Krushelnitsky A; Nesmelova I; Blanco F; Daragan VA; Serrano L; Mayo KH
    Protein Sci; 2000 Nov; 9(11):2118-27. PubMed ID: 11152123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motional dynamics of residues in a beta-hairpin peptide measured by 13C-NMR relaxation.
    Ramirez-Alvarado M; Daragan VA; Serrano L; Mayo KH
    Protein Sci; 1998 Mar; 7(3):720-9. PubMed ID: 9541404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine side-chain dynamics derived from 13C-multiplet NMR relaxation studies on di- and tripeptides.
    Mikhailov D; Daragan VA; Mayo KH
    J Biomol NMR; 1995 Jun; 5(4):397-410. PubMed ID: 7647558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C multiplet nuclear magnetic resonance relaxation-derived ring puckering and backbone dynamics in proline-containing glycine-based peptides.
    Mikhailov D; Daragan VA; Mayo KH
    Biophys J; 1995 Apr; 68(4):1540-50. PubMed ID: 7787039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of molecular association on structure and dynamics of a collagenous peptide.
    Daragan VA; Ilyina E; Mayo KH
    Biopolymers; 1993 Apr; 33(4):521-33. PubMed ID: 8467063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments.
    Peng JW; Wagner G
    Biochemistry; 1992 Sep; 31(36):8571-86. PubMed ID: 1390643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Main chain and side chain dynamics of peptides in liquid solution from 13C NMR: melittin as a model peptide.
    Kemple MD; Buckley P; Yuan P; Prendergast FG
    Biochemistry; 1997 Feb; 36(7):1678-88. PubMed ID: 9048551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular variances for internal bond rotations of side chains in GXG-based tripeptides derived from (13)C-NMR relaxation measurements: Implications to protein folding.
    Mikhailov DV; Washington L; Voloshin AM; Daragan VA; Mayo KH
    Biopolymers; 1999 Apr; 49(5):373-383. PubMed ID: 11180046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics and structure of the random coil and helical states of the collagen peptide, alpha 1-CB2, as determined by 13C magnetic resonance.
    Torchia DA; Lyerla JR; Quattrone AJ
    Biochemistry; 1975 Mar; 14(5):887-900. PubMed ID: 1125175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C-13C rotational resonance in a transmembrane peptide: a comparison of the fluid and gel phases.
    Langlais DB; Hodges RS; Davis JH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5945-57. PubMed ID: 11969576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl motions in 13C-methylated concanavalin as studied by 13C magnetic resonance relaxation techniques.
    Sherry AD; Keepers J; James TL; Teherani J
    Biochemistry; 1984 Jul; 23(14):3181-5. PubMed ID: 6432038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of intermediate (mobile) and slow (solidlike) protein motions in bovine lens homogenates by carbon-13 NMR spectroscopy.
    Morgan CF; Schleich T; Caines GH; Farnsworth PN
    Biochemistry; 1989 Jun; 28(12):5065-74. PubMed ID: 2765525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-lattice relaxation times for 13C in isotope-enriched glycine accumulated in frog muscle.
    Neville MC; Wyssbrod HR
    Biophys J; 1977 Mar; 17(3):255-67. PubMed ID: 300254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular microdynamical and conformational parameters of peptides from 1H and 13C NMR spin-lattice relaxation. Tetragastrin.
    Bleich HE; Cutnell JD; Glasel JA
    Biochemistry; 1976 Jun; 15(11):2455-66. PubMed ID: 1276155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone and side-chain dynamics of residues in a partially folded beta-sheet peptide from platelet factor-4.
    Daragan VA; Ilyina EE; Fields CG; Fields GB; Mayo KH
    Protein Sci; 1997 Feb; 6(2):355-63. PubMed ID: 9041637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.