These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8399374)

  • 1. The proton pumping activity of H(+)-ATPases: an improved fluorescence assay.
    Rottenberg H; Moreno-Sanchez R
    Biochim Biophys Acta; 1993 Nov; 1183(1):161-70. PubMed ID: 8399374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state.
    Groth G; Walker JE
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):351-7. PubMed ID: 8761492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase.
    Deléage G; Penin F; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of proton flux and conductance at pH 6.8 through single FO sectors from Escherichia coli.
    Franklin MJ; Brusilow WS; Woodbury DJ
    Biophys J; 2004 Nov; 87(5):3594-9. PubMed ID: 15339819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane.
    Brune A; Spillecke J; Kröger A
    Biochim Biophys Acta; 1987 Oct; 893(3):499-507. PubMed ID: 2888485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach.
    Vuokila PT; Hassinen IE
    Biochim Biophys Acta; 1989 May; 974(2):219-22. PubMed ID: 2540836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the Mg(2+)-ATP-dependent proton pumping activity of the synaptic vesicles a factor involved in the cerebral hypoxia?
    Benzi G; Gorini A; Ghigini B; Moretti A; Dagani F; Villa RF
    Neurochem Res; 1996 Jan; 21(1):7-18. PubMed ID: 8833218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the electrochemical proton gradient in submitochondrial particles.
    Berry EA; Hinkle PC
    J Biol Chem; 1983 Feb; 258(3):1474-86. PubMed ID: 6296098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonophoric activity of NADH coenzyme Q reductase and ATP synthase in coupled submitochondrial particles from horse platelets.
    Baracca A; Bucchi L; Ghelli A; Lenaz G
    Biochem Biophys Res Commun; 1997 Jun; 235(3):469-73. PubMed ID: 9207178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast purification and reconstitution of His-tagged cysteine-less Escherichia coli F1Fo ATP synthase.
    Ishmukhametov RR; Galkin MA; Vik SB
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):110-6. PubMed ID: 15620371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles.
    Moore AL; Bonner WD
    Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient, and salt effects.
    Haraux F; de Kouchkovsky Y
    Biochim Biophys Acta; 1980 Aug; 592(1):153-68. PubMed ID: 6249352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules.
    Salama G; Johnson RG; Scarpa A
    J Gen Physiol; 1980 Feb; 75(2):109-40. PubMed ID: 7373277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative model for using acridine orange as a transmembrane pH gradient probe.
    Clerc S; Barenholz Y
    Anal Biochem; 1998 May; 259(1):104-11. PubMed ID: 9606150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular slipping in redox and ATPase H+ pumps.
    Pietrobon D; Zoratti M; Azzone GF
    Biochim Biophys Acta; 1983 May; 723(2):317-21. PubMed ID: 6221758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.